
MATLAB®

Graphics

R2022b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Graphics
© COPYRIGHT 1984–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
March 2006 Online only New for MATLAB® 7.2 (Release 2006a)
September 2006 Online only Revised for MATLAB® 7.3 (Release 2006b)
March 2007 Online only Revised for MATLAB® 7.4 (Release 2007a)
September 2007 Online only Revised for MATLAB® 7.5 (Release 2007b)
March 2008 Online only Revised for MATLAB® 7.6 (Release 2008a)

This publication was previously part of the Using
MATLAB® Graphics User Guide.

October 2008 Online only Revised for MATLAB® 7.7 (Release 2008b)
March 2009 Online only Revised for MATLAB® 7.8 (Release 2009a)
September 2009 Online only Revised for MATLAB® 7.9 (Release 2009b)
March 2010 Online only Revised for MATLAB® 7.10 (Release 2010a)
September 2010 Online only Revised for MATLAB® 7.11 (Release 2010b)
April 2011 Online only Revised for MATLAB® 7.12 (Release 2011a)
September 2011 Online only Revised for MATLAB® 7.13 (Release 2011b)
March 2012 Online only Revised for MATLAB® 7.14 (Release 2012a)
September 2012 Online only Revised for MATLAB 8.0 (Release 2012b)
March 2013 Online only Revised for MATLAB 8.1 (Release 2013a)
September 2013 Online only Revised for MATLAB 8.2 (Release 2013b)
March 2014 Online only Revised for MATLAB 8.3 (Release 2014a)
October 2014 Online only Revised for MATLAB 8.4 (Release 2014b)
March 2015 Online only Revised for MATLAB 8.5 (Release 2015a)
September 2015 Online only Revised for MATLAB 8.6 (Release 2015b)
March 2016 Online only Revised for MATLAB 9.0 (Release 2016a)
September 2016 Online only Revised for MATLAB 9.1 (Release 2016b)
March 2017 Online only Revised for MATLAB 9.2 (Release 2017a)
September 2017 Online only Revised for MATLAB 9.3 (Release 2017b)
March 2018 Online only Revised for MATLAB 9.4 (Release 2018a)
September 2018 Online only Revised for MATLAB 9.5 (Release 2018b)
March 2019 Online only Revised for MATLAB 9.6 (Release 2019a)
September 2019 Online only Revised for MATLAB 9.7 (Release 2019b)
March 2020 Online only Revised for MATLAB 9.8 (Release 2020a)
September 2020 Online only Revised for MATLAB 9.9 (Release 2020b)
March 2021 Online only Revised for MATLAB 9.10 (Release 2021a)
September 2021 Online only Revised for MATLAB 9.11 (Release 2021b)
March 2022 Online only Revised for MATLAB 9.12 (Release 2022a)
September 2022 Online only Revised for MATLAB 9.13 (Release 2022b)

Line Plots
1

Types of MATLAB Plots . 1-2

Create Common 2-D Plots . 1-5

Plots That Support Tables . 1-14
Create Simple Line Plots . 1-14
Customize Line Plots . 1-15
Customize Scatter Plots . 1-16
Update Plot by Modifying the Table . 1-18
Combine Table and Vector Data . 1-20

Create 2-D Line Plot . 1-25

Create Line Plot with Markers . 1-30
Add Markers to Line Plot . 1-30
Specify Marker Size and Color . 1-31
Control Placement of Markers Along Line . 1-32
Display Markers at Maximum and Minimum Data Points 1-33
Revert to Default Marker Locations . 1-34
Supported Marker Symbols . 1-36

Combine Line and Bar Charts Using Two y-Axes 1-38

Combine Line and Stem Plots . 1-41

Overlay Stairstep Plot and Line Plot . 1-44

Line Plot with Confidence Bounds . 1-46

Plot Imaginary and Complex Data . 1-47

Pie Charts, Bar Plots, and Histograms
2

Types of Bar Graphs . 2-2

Modify Baseline of Bar Graph . 2-8

Overlay Bar Graphs . 2-11

v

Contents

Bar Chart with Error Bars . 2-15

Color 3-D Bars by Height . 2-16

Compare Data Sets Using Overlayed Area Graphs 2-18

Offset Pie Slice with Greatest Contribution . 2-22

Add Legend to Pie Chart . 2-24

Label Pie Chart With Text and Percentages . 2-26

Color Analysis with Bivariate Histogram . 2-28

Control Categorical Histogram Display . 2-34

Replace Discouraged Instances of hist and histc 2-41
Old Histogram Functions (hist, histc) . 2-41
Recommended Histogram Functions . 2-41
Differences Requiring Code Updates . 2-41

Polar Plots
3

Plotting in Polar Coordinates . 3-2

Customize Polar Axes . 3-14

Compass Labels on Polar Axes . 3-22

Contour Plots
4

Label Contour Plot Levels . 4-2

Change Fill Colors for Contour Plot . 4-3

Highlight Specific Contour Levels . 4-5

Combine Contour Plot and Quiver Plot . 4-7

Contour Plot with Major and Minor Grid Lines . 4-9

vi Contents

Specialized Charts
5

Create Heatmap from Tabular Data . 5-2

Create Word Cloud from String Arrays . 5-11

Explore Table Data Using Parallel Coordinates Plot 5-14

Geographic Axes and Charts
6

Create Maps Using Latitude and Longitude Data . 6-2

Pan and Zoom Behavior in Geographic Axes and Charts 6-6

Geographic Bubble Charts Overview . 6-8

Geographic Bubble Chart Legends . 6-10

View Cyclone Track Data in Geographic Density Plot 6-12

View Density of Cellular Tower Placement . 6-17

Customize Layout of Geographic Axes . 6-23

Deploy Geographic Axes and Charts . 6-25

Use Geographic Bubble Chart Properties . 6-26
Control Bubble Size . 6-26
Control Bubble Color . 6-28

Specify Map Limits with Geographic Axes . 6-30
Display Several Geographic Bubble Charts Centered Within Specified Limits

. 6-30

Access Basemaps for Geographic Axes and Charts 6-34
Display "darkwater" on Geographic Plots . 6-34
Display "darkwater" on Geographic Bubble Charts 6-36
Download Basemaps . 6-38
Basemap Caching Behavior . 6-39

Create Geographic Bubble Chart from Tabular Data 6-40

vii

Animation
7

Animation Techniques . 7-2
Updating the Screen . 7-2
Optimizing Performance . 7-2

Trace Marker Along Line . 7-3

Move Group of Objects Along Line . 7-5

Animate Graphics Object . 7-8

Line Animations . 7-10

Record Animation for Playback . 7-12
Record and Play Back Movie . 7-12
Capture Entire Figure for Movie . 7-12

Animating a Surface . 7-14

Titles and Labels
8

Add Title and Axis Labels to Chart . 8-2

Add Legend to Graph . 8-8

Add Text to Chart . 8-15

Add Annotations to Chart . 8-22

Greek Letters and Special Characters in Chart Text 8-26
Include Greek Letters . 8-26
Include Superscripts and Annotations . 8-26
TeX Markup Options . 8-28
Create Text with LaTeX . 8-30
Create Plot Titles, Tick Labels, and Legends with LaTeX 8-31

Make the Graph Title Smaller . 8-35

Axes Appearance
9

Specify Axis Limits . 9-2

Specify Axis Tick Values and Labels . 9-9

viii Contents

Add Grid Lines and Edit Placement . 9-16

Combine Multiple Plots . 9-24

Customized Presentations and Special Effects with Tiled Chart Layouts
. 9-33

Stacked Colorbar and Plot with Shared Title . 9-33
Colorbar That Adjusts as Tiles Reflow . 9-34
Irregular Grid of Plots . 9-36
Main Plot with Adjacent Smaller Plots . 9-38
Region-of-Interest Plot . 9-40

Create Chart with Two y-Axes . 9-44

Modify Properties of Charts with Two y-Axes . 9-52
Change Axes Properties . 9-52
Change Ruler Properties . 9-54
Specify Colors Using Default Color Order . 9-56

Display Data with Multiple Scales and Axes Limits 9-58
Display Data with Two y-Axes . 9-58
Display Data with Multiple x-Axes and y-Axes . 9-59
Plot Data on Discontinuous x-Axis . 9-61
Display Two Sets of Data with Separate Colorbars 9-65

Control Ratio of Axis Lengths and Data Unit Lengths 9-68
Plot Box Aspect Ratio . 9-68
Data Aspect Ratio . 9-71
Revert Back to Default Ratios . 9-74

Control Axes Layout . 9-76
Position-Related Properties and Functions . 9-76
Position and Margin Boundaries . 9-77
Position for Square or Constrained Aspect Ratios 9-78
Controlling Automatic Resize Behavior . 9-79
Stretch-to-Fill Behavior . 9-80

Manipulating Axes Aspect Ratio . 9-82
Axes Aspect Ratio Properties . 9-82
Default Aspect Ratio Selection . 9-83
Maintaining the Axes Proportions with Figure Resize 9-85
Aspect Ratio Properties . 9-87
Displaying Real Objects . 9-91

Specify Plot Colors . 9-94
Types of Color Values . 9-94
Specify Color of a Bar Chart . 9-95
Specify Marker Colors in a Scatter Plot . 9-96
Specify Colors in a Series of Plots . 9-97

Specify Line and Marker Appearance in Plots . 9-102
Line Styles . 9-102
Markers . 9-102
Specify Combinations of Colors, Line Styles, and Markers 9-103
Modify Line Width, Marker Fill, and Marker Outline 9-107

ix

Control How Plotting Functions Select Colors and Line Styles 9-111
How Automatic Assignment Works . 9-111
Changing Color Schemes and Line Styles . 9-113
Changing Indices into the ColorOrder and LineStyleOrder Arrays 9-114

Clipping in Plots and Graphs . 9-117

Using Graphics Smoothing . 9-119

Coloring Graphs
10

Creating Colorbars . 10-2

Change Color Scheme Using a Colormap . 10-10

How Surface Plot Data Relates to a Colormap . 10-16
Relationship Between the Surface and the Colormap 10-16
Change the Direction or Pattern of Colors . 10-17

How Image Data Relates to a Colormap . 10-21

How Patch Data Relates to a Colormap . 10-26
Relationship of the Colormap to x-, y-, and z-Coordinate Arrays 10-26
Relationship of the Colormap to Face-Vertex Data 10-28

Control Colormap Limits . 10-32

Differences Between Colormaps and Truecolor 10-36
Differences in Workflow . 10-36
Differences in Visual Presentation . 10-37

Lighting
11

Lighting Overview . 11-2
Lighting Commands . 11-2
Light Objects . 11-2
Properties That Affect Lighting . 11-2
Examples of Lighting Control . 11-4

Reflectance Characteristics of Graphics Objects 11-7
Specular and Diffuse Reflection . 11-7
Ambient Light . 11-7
Specular Exponent . 11-8
Specular Color Reflectance . 11-9
Back Face Lighting . 11-9
Positioning Lights in Data Space . 11-10

x Contents

Transparency
12

Add Transparency to Graphics Objects . 12-2
What Is Transparency? . 12-2
Graphics Objects that Support Transparency . 12-2
Create Area Chart with Transparency . 12-3
Create Bar Chart with Transparency . 12-4
Create Scatter Chart with Transparency . 12-5
Vary Transparency Using Alpha Data . 12-6
Vary Surface Chart Transparency . 12-7
Vary Patch Object Transparency . 12-7

Changing Transparency of Images, Patches or Surfaces 12-9

Modify the Alphamap . 12-16
Default Alpha Map . 12-16
Example — Modifying the Alphamap . 12-18

Data Exploration
13

Interactively Explore Plotted Data . 13-2
Zoom, Pan, and Rotate Data . 13-2
Display Data Values Using Data Tips . 13-2
Select and Modify Data Values Using Data Brushing 13-3
Customize Plots Using Property Inspector . 13-4

Create Custom Data Tips . 13-6
Change Labels and Add Row . 13-6
Show Table Values in Data Tips . 13-7

Automatically Refresh Plot After Changing Data 13-9
Update Plot Using Data Linking . 13-9
Update Plot Using Data Source Properties . 13-10

Control Chart Interactivity . 13-12
Show or Hide Axes Toolbar . 13-12
Customize Axes Toolbar . 13-12
Enable or Disable Built-In Interactions . 13-14
Customize Built-In Interactions . 13-14

Camera Views
14

View Overview . 14-2
Viewing 3-D Graphs and Scenes . 14-2
Positioning the Viewpoint . 14-2

xi

Setting the Aspect Ratio . 14-2
Default Views . 14-2

Setting the Viewpoint with Azimuth and Elevation 14-4
Azimuth and Elevation . 14-4

Camera Graphics Terminology . 14-8

View Control with the Camera Toolbar . 14-9
Camera Toolbar . 14-9
Camera Motion Controls . 14-11
Orbit Camera . 14-11
Orbit Scene Light . 14-12
Pan/Tilt Camera . 14-12
Move Camera Horizontally/Vertically . 14-13
Move Camera Forward and Backward . 14-14
Zoom Camera . 14-15
Camera Roll . 14-16

Dollying the Camera . 14-18
Summary of Techniques . 14-18
Implementation . 14-18

Moving the Camera Through a Scene . 14-19
Summary of Techniques . 14-19
Graph the Volume Data . 14-19
Set the View . 14-20
Specify the Light Source . 14-20
Select the Lighting Method . 14-20
Define the Camera Path as a Stream Line . 14-20
Implement the Fly-Through . 14-21

Low-Level Camera Properties . 14-22
Camera Properties You Can Set . 14-22
Default Viewpoint Selection . 14-22
Moving In and Out on the Scene . 14-23
Making the Scene Larger or Smaller . 14-24
Revolving Around the Scene . 14-24
Rotation Without Resizing . 14-25
Rotation About the Viewing Axis . 14-25

Understanding View Projections . 14-27
Two Types of Projections . 14-27
Projection Types and Camera Location . 14-28

Displaying Bit-Mapped Images
15

Working with Images in MATLAB Graphics . 15-2
What Is Image Data? . 15-2
Supported Image Formats . 15-3

xii Contents

Image Types . 15-4
Indexed Images . 15-4
Grayscale (Intensity) Images . 15-5
RGB (Truecolor) Images . 15-6

8-Bit and 16-Bit Images . 15-8
Indexed Images . 15-8
Intensity Images . 15-9
RGB Images . 15-9
Mathematical Operations Support for uint8 and uint16 15-9
Other 8-Bit and 16-Bit Array Support . 15-10
Converting an 8-Bit RGB Image to Grayscale . 15-10
Summary of Image Types and Numeric Classes 15-12

Read, Write, and Query Image Files . 15-14
Working with Image Formats . 15-14
Reading a Graphics Image . 15-14
Writing a Graphics Image . 15-15
Subsetting a Graphics Image (Cropping) . 15-15
Obtaining Information About Graphics Files . 15-16

Displaying Graphics Images . 15-17
Image Types and Display Methods . 15-17
Controlling Aspect Ratio and Display Size . 15-18

The Image Object and Its Properties . 15-21
Image CData . 15-21
Image CDataMapping . 15-21
XData and YData . 15-22
Add Text to Image Data . 15-24
Additional Techniques for Fast Image Updating 15-25

Printing Images . 15-27

Convert Image Graphic or Data Type . 15-28

Displaying Image Data . 15-29

Create and Compare Resizing Interpolation Kernels 15-32

Printing and Saving
16

Print Figure from File Menu . 16-2
Simple Printout . 16-2
Preserve Background Color and Tick Values . 16-2
Figure Size and Placement . 16-2
Line Width and Font Size . 16-3

Copy Figure to Clipboard from Edit Menu . 16-5
Copy Figure to Clipboard . 16-5
Specify Format, Background Color, and Size Options 16-6

xiii

Customize Figure Before Saving . 16-8
Set Figure Size . 16-8
Set Figure Background Color . 16-9
Set Figure Font Size and Line Width . 16-10
Save Figure to File . 16-11
Save Figure Settings for Future Use . 16-12
Apply Settings to Another Figure . 16-12
Restore Figure to Original Settings . 16-12
Customize Figure Programmatically . 16-13

Save Plot as Image or Vector Graphics File . 16-14
Save Plots Interactively . 16-14
Save Plots Programmatically . 16-16
Open Saved Plots in Other Applications . 16-17

Save Figure with Specific Size, Resolution, or Background Color 16-19
Specify Resolution . 16-19
Specify Size . 16-20
Specify Background Color . 16-21
Preserve Axis Limits and Tick Values . 16-22

Save Figure to Reopen in MATLAB Later . 16-23
Save Figure to FIG-File . 16-23
Generate Code to Recreate Figure . 16-24

Saving and Copying Plots with Minimal White Space 16-25
Saving or Copying a Single Plot . 16-25
Saving or Copying Multiple Plots in a Figure . 16-26

Graphics Properties
17

Modify Graphics Objects . 17-2

Graphics Object Hierarchy . 17-9
MATLAB Graphics Objects . 17-9
Graphs Are Composed of Specific Objects . 17-9
Organization of Graphics Objects . 17-9

Access Property Values . 17-14
Object Properties and Dot Notation . 17-14
Graphics Object Variables Are Handles . 17-16
Listing Object Properties . 17-17
Modify Properties with set and get . 17-17
Multi Object/Property Operations . 17-18

Default Property Values . 17-19
Predefined Values for Properties . 17-19
Specify Default Values . 17-19
Where in Hierarchy to Define Default . 17-20
List Default Values . 17-20
Set Properties to the Current Default . 17-20

xiv Contents

Remove Default Values . 17-20
Set Properties to Factory-Defined Values . 17-21
List Factory-Defined Property Values . 17-21
Reserved Words . 17-21

Default Values for Automatically Calculated Properties 17-22
What Are Automatically Calculated Properties 17-22
Default Values for Automatically Calculated Properties 17-22

How MATLAB Finds Default Values . 17-24

Factory-Defined Property Values . 17-25

Multilevel Default Values . 17-26

Object Identification
18

Special Object Identifiers . 18-2
Getting Handles to Special Objects . 18-2
The Current Figure, Axes, and Object . 18-2
Callback Object and Callback Figure . 18-3

Find Objects . 18-4
Find Objects with Specific Property Values . 18-4
Find Text by String Property . 18-4
Use Regular Expressions with findobj . 18-5
Limit Scope of Search . 18-7

Copy Objects . 18-8
Copying Objects with copyobj . 18-8
Copy Single Object to Multiple Destinations. 18-8
Copying Multiple Objects . 18-8

Delete Graphics Objects . 18-10
How to Delete Graphics Objects . 18-10
Handles to Deleted Objects . 18-11

Working with Graphics Objects
19

Graphics Object Handles . 19-2
What You Can Do with Handles . 19-2
What You Cannot Do with Handles . 19-2

Preallocate Arrays of Graphics Objects . 19-4

Test for Valid Handle . 19-5

xv

Handles in Logical Expressions . 19-6
If Handle Is Valid . 19-6
If Result Is Empty . 19-6
If Handles Are Equal . 19-7

Graphics Arrays . 19-8

Graphics Object Callbacks
20

Create Callbacks for Graphics Objects . 20-2
What Is a Callback? . 20-2
Create Basic Callback . 20-2
Create Callback with Additional Input Arguments 20-3
Create Callback as a Default . 20-4

Button Down Callback Function . 20-6
When to Use a Button Down Callback . 20-6
How to Define a Button Down Callback . 20-6

Define a Context Menu . 20-7
When to Use a Context Menu . 20-7
How to Define a Context Menu . 20-7

Define an Object Creation Callback . 20-8
Related Information . 20-8

Define an Object Deletion Callback . 20-9

Capturing Mouse Clicks . 20-10
Properties That Control Response to Mouse Clicks 20-10
Combinations of PickablePart/HitTest Values . 20-10
Passing Mouse Click Up the Hierarchy . 20-11

Pass Mouse Click to Group Parent . 20-14
Objective and Design . 20-14
Object Hierarchy and Key Properties . 20-14
MATLAB Code . 20-14

Pass Mouse Click to Obscured Object . 20-16

Group Objects
21

Object Groups . 21-2

Create Object Groups . 21-3
Parent Specification . 21-3
Visible and Selected Properties of Group Children 21-4

xvi Contents

Transforms Supported by hgtransform . 21-5
Transforming Objects . 21-5
Rotation . 21-5
Translation . 21-5
Scaling . 21-6
The Default Transform . 21-6
Disallowed Transforms: Perspective . 21-6
Disallowed Transforms: Shear . 21-6
Absolute vs. Relative Transforms . 21-7
Combining Transforms into One Matrix . 21-7
Undoing Transform Operations . 21-8

Rotate About an Arbitrary Axis . 21-9
Translate to Origin Before Rotating . 21-9
Rotate Surface . 21-9

Nest Transforms for Complex Movements . 21-12

Controlling Graphics Output
22

Control Graph Display . 22-2
What You Can Control . 22-2
Targeting Specific Figures and Axes . 22-2

Prepare Figures and Axes for Graphs . 22-4
Behavior of MATLAB Plotting Functions . 22-4
How the NextPlot Properties Control Behavior . 22-4
Control Behavior of User-Written Plotting Functions 22-5

Use newplot to Control Plotting . 22-7

Responding to Hold State . 22-9

Prevent Access to Figures and Axes . 22-11
Why Prevent Access . 22-11
How to Prevent Access . 22-11

Developing Classes of Chart Objects
23

Chart Development Overview . 23-2
Structure of a Chart Class . 23-2
Implicit Constructor Method . 23-3
Public and Private Property Blocks . 23-3
Setup Method . 23-4
Update Method . 23-5
Example: Confidence Bounds Chart . 23-5
Support Common Graphics Features . 23-8

xvii

Write Constructors for Chart Classes . 23-9
Example: Confidence Bounds Chart with Custom Constructor 23-10

Develop Charts With Polar Axes, Geographic Axes, or Multiple Axes . . 23-13
Create a Single Polar or Geographic Axes Object 23-13
Create a Tiling of Multiple Axes Objects . 23-13
Example: Chart Containing Geographic and Cartesian Axes 23-14

Managing Properties of Chart Classes . 23-17
Initialize Property Values . 23-17
Validate Property Values . 23-17
Customize the Property Display . 23-18
Optimize the update Method . 23-19
Example: Optimized Isosurface Chart with Customized Property Display

. 23-20

Enabling Convenience Functions for Setting Axes Properties 23-25
Support for Different Types of Properties . 23-25
Enable Functions for Noncomputed Properties 23-25
Enable Functions for Computed Properties . 23-26
Chart Class That Supports title, xlim, and ylim Functions 23-27

Saving and Loading Instances of Chart Classes 23-31
Coding Pattern for Saving and Loading Axes Changes 23-31
Define a Protected Property for Storing the Chart State 23-31
Define a get Method for Retrieving the Chart State 23-31
Define a Protected Method That Updates the Axes 23-32
Example: 3-D Plot That Stores Axis Limits and View 23-33

Chart Class with Custom Property Display . 23-38

Chart Class with Variable Number of Lines . 23-41

Optimized Chart Class for Displaying Variable Number of Lines 23-44

Chart Class for Displaying Variable Size Tiling of Plots 23-48

Chart Class Containing Two Interactive Plots . 23-51

Optimize Performance of Graphics Programs
24

Improve Graphics Performance . 24-2
Improve Graphics Update Speed . 24-2
Improve Image Loading Speed . 24-2
Identify Bottlenecks in Your Code . 24-3
Improve Performance of Long-Running Animations 24-5
Provide Smooth and Responsive Axes Interactions 24-6

What Affects Code Execution Speed . 24-7
Potential Bottlenecks . 24-7
How to Improve Performance . 24-7

xviii Contents

Judicious Object Creation . 24-8
Object Overhead . 24-8
Do Not Create Unnecessary Objects . 24-8
Use NaNs to Simulate Multiple Lines . 24-8
Modify Data Instead of Creating New Objects . 24-9

Avoid Repeated Searches for Objects . 24-10
Limit Scope of Search . 24-10

Screen Updates . 24-11
MATLAB Graphics System . 24-11
Managing Updates . 24-11

Optimize Code for Getting and Setting Graphics Properties 24-13
Automatically Calculated Properties . 24-13
Inefficient Cycles of Sets and Gets . 24-14
Changing Text Extent to Rotate Labels . 24-14

Avoid Updating Static Data . 24-15
Segmenting Data to Reduce Update Times . 24-15

Transforming Objects Efficiently . 24-17

Use Low-Level Functions for Speed . 24-18

System Requirements for Graphics . 24-19
Minimum System Requirements . 24-19
Recommended System Requirements . 24-19
Upgrade Your Graphics Drivers . 24-19
Graphics Features That Have Specific Requirements 24-19

Resolving Low-Level Graphics Issues . 24-21
Upgrade Your Graphics Hardware Drivers . 24-21
Choose a Renderer Implementation for Your System 24-21
Fix Out-of-Memory Issues . 24-22
Contact Technical Support . 24-22

xix

Line Plots

• “Types of MATLAB Plots” on page 1-2
• “Create Common 2-D Plots” on page 1-5
• “Plots That Support Tables” on page 1-14
• “Create 2-D Line Plot” on page 1-25
• “Create Line Plot with Markers” on page 1-30
• “Combine Line and Bar Charts Using Two y-Axes” on page 1-38
• “Combine Line and Stem Plots” on page 1-41
• “Overlay Stairstep Plot and Line Plot” on page 1-44
• “Line Plot with Confidence Bounds” on page 1-46
• “Plot Imaginary and Complex Data” on page 1-47

1

Types of MATLAB Plots

There are various functions that you can use to plot data in MATLAB. This table classifies and
illustrates the common graphics functions.

“Line
Plots”

Scatte
r and
Bubbl
e
Chart
s

“Data
Distri
bution
Plots”

“Discr
ete
Data
Plots”

“Geog
raphic
Plots”

“Polar
Plots”

“Cont
our
Plots”

“Vect
or
Fields
”

“Surf
ace
and
Mesh
Plots”

“Volu
me
Visual
izatio
n”

“Anim
ation”

“Imag
es”

plot scatt
er

histo
gram

bar geopl
ot

polar
plot

conto
ur

quive
r

surf strea
mline

anima
tedli
ne

image

plot3 scatt
er3

histo
gram2

barh geosc
atter

polar
histo
gram

conto
urf

quive
r3

surfc strea
mslic
e

comet image
sc

stair
s

bubbl
echar
t

pie bar3 geobu
bble

polar
scatt
er

conto
ur3

feath
er

surfl strea
mpart
icles

comet
3

error
bar

bubbl
echar
t3

pie3 bar3h polar
bubbl
echar
t

conto
ursli
ce

 ribbo
n

strea
mribb
on

area swarm
chart

scatt
erhis
togra
m

paret
o

 compa
ss

fcont
our

 pcolo
r

strea
mtube

1 Line Plots

1-2

“Line
Plots”

Scatte
r and
Bubbl
e
Chart
s

“Data
Distri
bution
Plots”

“Discr
ete
Data
Plots”

“Geog
raphic
Plots”

“Polar
Plots”

“Cont
our
Plots”

“Vect
or
Fields
”

“Surf
ace
and
Mesh
Plots”

“Volu
me
Visual
izatio
n”

“Anim
ation”

“Imag
es”

stack
edplo
t

swarm
chart
3

swarm
chart

stem ezpol
ar

 fsurf conep
lot

loglo
g

spy swarm
chart
3

stem3 fimpl
icit3

slice

semil
ogx

 wordc
loud

stair
s

 mesh

semil
ogy

 bubbl
eclou
d

 meshc

fplot heatm
ap

 meshz

fplot
3

 paral
lelpl
ot

 water
fall

fimpl
icit

 plotm
atrix

 fmesh

 Types of MATLAB Plots

1-3

See Also

Related Examples
• “Create 2-D Line Plot” on page 1-25
• MATLAB Plot Gallery

1 Line Plots

1-4

https://www.mathworks.com/products/matlab/plot-gallery.html

Create Common 2-D Plots

This example shows how to create a variety of 2-D plots in MATLAB®.

Line Plots

The plot function creates simple line plots of x and y values.

x = 0:0.05:5;
y = sin(x.^2);
figure
plot(x,y)

Line plots can display multiple sets of x and y data.

y1 = sin(x.^2);
y2 = cos(x.^2);
plot(x,y1,x,y2)

 Create Common 2-D Plots

1-5

Bar Plots

The bar function creates vertical bar charts. The barh function creates horizontal bar charts.

x = -2.9:0.2:2.9;
y = exp(-x.*x);
bar(x,y)

1 Line Plots

1-6

Stairstep Plots

The stairs function creates a stairstep plot. It can create a stairstep plot of Y values only or a
stairstep plot of x and y values.

x = 0:0.25:10;
y = sin(x);
stairs(x,y)

 Create Common 2-D Plots

1-7

Errorbar Plots

The errorbar function draws a line plot of x and y values and superimposes a vertical error bar on
each observation. To specify the size of the error bar, pass an additional input argument to the
errorbar function.

x = -2:0.1:2;
y = erf(x);
eb = rand(size(x))/7;
errorbar(x,y,eb)

1 Line Plots

1-8

Polar Plots

The polarplot function draws a polar plot of the angle values in theta (in radians) versus the
radius values in rho.

theta = 0:0.01:2*pi;
rho = abs(sin(2*theta).*cos(2*theta));
polarplot(theta,rho)

 Create Common 2-D Plots

1-9

Stem Plots

The stem function draws a marker for each x and y value with a vertical line connected to a common
baseline.

x = 0:0.1:4;
y = sin(x.^2).*exp(-x);
stem(x,y)

1 Line Plots

1-10

Scatter Plots

The scatter function draws a scatter plot of x and y values.

load patients Height Weight Systolic
scatter(Height,Weight)
xlabel('Height')
ylabel('Weight')

 Create Common 2-D Plots

1-11

Use optional arguments to the scatter function to specify the marker size and color. Use the
colorbar function to show the color scale on the current axes.

scatter(Height,Weight,20,Systolic)
xlabel('Height')
ylabel('Weight')
colorbar

1 Line Plots

1-12

See Also

Related Examples
• “Create 2-D Line Plot” on page 1-25

 Create Common 2-D Plots

1-13

Plots That Support Tables
Many plotting functions can plot data directly from a table. You pass the table as the first argument to
the function followed by the variables you want to plot. You can specify either a table or a timetable,
and in many cases, you can plot multiple data sets together in the same axes.

The following examples use the plot and scatter functions to demonstrate the overall approach for
plotting data from a table. To learn if a specific plotting function supports tables, refer to the
documentation for that function.

Create Simple Line Plots

Create a table containing three variables. Then pass the table as the first argument to the plot
function followed by the names of the variables you want to plot. In this case, plot the Input variable
on the x-axis and the Output1 variable on the y-axis. Notice that the axis labels match the variable
names.

% Create a table
Input = linspace(0,12)';
Output1 = sin(Input);
Output2 = sin(Input/3);
tbl = table(Input,Output1,Output2);

% Plot the table variables
plot(tbl,"Input","Output1")

1 Line Plots

1-14

To plot multiple data sets together, specify a string vector of table variable names for the x-
coordinates, y-coordinates, or both. For example, plot the Output1 and Output2 variables together
on the y-axis.

Because the y-coordinates come from two different table variables, it is not clear what the y-axis label
should be, so the axis label remains blank. However, if you add a legend, the legend entries match the
corresponding variable names.

plot(tbl,"Input",["Output1","Output2"])
legend

Customize Line Plots

To customize the appearance of lines after plotting with a table, set the LineStyle and Color
properties. For example, read weather.csv as a timetable and plot the Temperature variable
against the row times. Return the Line object as p so you can set its properties later.

Note: This code omits the variable for the x-coordinates. When you omit the x-coordinates, the y-
coordinates are plotted against the row indices (for tables) or the row times (for timetables).

tbl = readtimetable("weather.csv");
p = plot(tbl,"Temperature");

Change the style of the line to dashed, and change the color to a shade of purple.

 Plots That Support Tables

1-15

p.LineStyle = "--";
p.Color = [0.5 0 1];

Customize Scatter Plots

You can customize the appearance of the markers in scatter plots by setting properties after plotting
with a table. For example, read patients.xls as a table and plot the Diastolic variable against
the Systolic variable with filled markers. Return the Scatter object as s so you can set its
properties later.

tbl = readtable("patients.xls");
s = scatter(tbl,"Systolic","Diastolic","filled");

Change the marker symbol to a square, fill the markers with a shade of light blue, and change the
marker size to 80.

s.Marker = "sq";
s.MarkerFaceColor = [0.5 0.7 1];
s.SizeData = 80;

1 Line Plots

1-16

You can also vary the color and transparency of the markers according to table variables. For
example, vary the colors according to the Age variable by setting the MarkerFaceColor property to
"flat" and then setting the ColorVariable property to "Age".

Vary the transparency according to the Weight variable by setting the MarkerFaceAlpha property
to "flat" and then setting the AlphaVariable property to "Weight".

% Vary the colors
s.MarkerFaceColor = "flat";
s.ColorVariable = "Age";

% Vary the transparency
s.MarkerFaceAlpha = "flat";
s.AlphaVariable = "Weight";

 Plots That Support Tables

1-17

Update Plot by Modifying the Table

When you pass a table to a plotting function, a copy of the table is stored in the SourceTable
property of the plot object. If you change the contents of the table stored in that property, the plot
automatically updates to show the changes. (However, if you make changes to the table in your
workspace, those changes have no effect on your plot.)

For example, read patients.xls as a table and plot the Weight variable versus the Height
variable. Return the Scatter object as s, so you can access its properties later.

tbl = readtable("patients.xls");
s = scatter(tbl,"Height","Weight","filled");

1 Line Plots

1-18

To change a value in the table, use dot notation to reference the table from the SourceTable
property of the Scatter object. In this case, find the maximum value of the Weight variable and
change it to 300. The plot automatically updates.

[~,idx] = max(s.SourceTable.Weight);
s.SourceTable.Weight(idx) = 300;

 Plots That Support Tables

1-19

Combine Table and Vector Data

Many plots that support tables allow you to specify some aspects of your plot using a table variable
and other aspects using vectors or matrices. For instance, you can create a scatter plot using
coordinates from a table and customize the colors of the markers by setting the CData property to a
vector, an RGB triplet, or a matrix of RGB triplets.

For example, create a scatter plot using data from a table. Read patients.xls as a table, and plot
the Weight variable versus the Height variable.

tbl = readtable("patients.xls");
s = scatter(tbl,"Height","Weight","filled");

1 Line Plots

1-20

Next, change the colors of the plotted points using a vector. When you combine data from different
sources like this, the size of each vector, matrix, or table variable must be compatible with the plot
you are creating. In this case, create a vector called bpratio by dividing the systolic values by the
diastolic values from the table. Because bpratio is derived from the same table as the Height and
Weight variables, it has the same number of elements as those variables, and so it is compatible with
this plot.

Color each point according to the blood pressure ratio by setting the CData property to bpratio.
Then add a colorbar.

% Vary the color by blood pressure ratio
bpratio = tbl.Systolic./tbl.Diastolic;
s.CData = bpratio;

% Add a colorbar
colorbar

 Plots That Support Tables

1-21

You can also plot vectors or matrices, and modify the plot using table variables. After you create the
plot, set the SourceTable property, and then set the table-related properties that you want. Table-
related properties typically have the word Variable in their names. For example, plot two vectors of
100 random numbers.

x = rand(100,1);
y = rand(100,1);
s = scatter(x,y,"filled");

1 Line Plots

1-22

Change the marker colors so that they vary according to the values in a table variable. Read
patients.xls as the table tbl. Set the SourceTable property and vary the marker colors
according to the Age variable in the table. Because the table has 100 rows, and the plot has 100
points, the Age variable is compatible with the plot. Then, add a colorbar to the plot.

% Set source table and vary color by age
s.SourceTable = tbl;
s.ColorVariable = "Age";

% Add a colorbar
colorbar

 Plots That Support Tables

1-23

Note: Standalone visualizations such as heatmap do not support combinations of table and vector
data.

See Also
Functions
plot | scatter | table | readtable | readtimetable

Properties
Chart Line | Scatter

Related Examples
• “Access Data in Tables”
• “Create Tables and Assign Data to Them”

1 Line Plots

1-24

Create 2-D Line Plot

Create a simple line plot and label the axes. Customize the appearance of plotted lines by changing
the line color, the line style, and adding markers.

Create Line Plot

Create a two-dimensional line plot using the plot function. For example, plot the value of the sine
function from 0 to 2π.

x = linspace(0,2*pi,100);
y = sin(x);
plot(x,y)

Label the axes and add a title.

xlabel('x')
ylabel('sin(x)')
title('Plot of the Sine Function')

Plot Multiple Lines

By default, MATLAB clears the figure before each plotting command. Use the figure command to
open a new figure window. You can plot multiple lines using the hold on command. Until you use
hold off or close the window, all plots appear in the current figure window.

 Create 2-D Line Plot

1-25

figure
x = linspace(0,2*pi,100);
y = sin(x);
plot(x,y)

hold on
y2 = cos(x);
plot(x,y2)
hold off

Change Line Appearance

You can change the line color, line style, or add markers by including an optional line specification
when calling the plot function. For example:

• ':' plots a dotted line.
• 'g:' plots a green, dotted line.
• 'g:*' plots a green, dotted line with star markers.
• '*' plots star markers with no line.

The symbols can appear in any order. You do not need to specify all three characteristics (line color,
style, and marker). For more information about the different style options, see the plot function
page.

For example, plot a dotted line. Add a second plot that uses a dashed, red line with circle markers.

1 Line Plots

1-26

x = linspace(0,2*pi,50);
y = sin(x);
plot(x,y,':')

hold on
y2 = cos(x);
plot(x,y2,'--ro')
hold off

Plot only the data points by omitting the line style option from the line specification.

x = linspace(0,2*pi,25);
y = sin(x);
plot(x,y,'o')

 Create 2-D Line Plot

1-27

Change Line Object Properties

You also can customize the appearance of the plot by changing properties of the Line object used to
create the plot.

Create a line plot. Assign the Line object created to the variable ln. The display shows commonly
used properties, such as Color, LineStyle, and LineWidth.

x = linspace(0,2*pi,25);
y = sin(x);
ln = plot(x,y)

ln =
 Line with properties:

 Color: [0 0.4470 0.7410]
 LineStyle: '-'
 LineWidth: 0.5000
 Marker: 'none'
 MarkerSize: 6
 MarkerFaceColor: 'none'
 XData: [0 0.2618 0.5236 0.7854 1.0472 1.3090 1.5708 1.8326 ...]
 YData: [0 0.2588 0.5000 0.7071 0.8660 0.9659 1 0.9659 ...]

 Show all properties

1 Line Plots

1-28

To access individual properties, use dot notation. For example, change the line width to 2 points and
set the line color to an RGB triplet color value, in this case [0 0.5 0.5]. Add blue, circle markers.

ln.LineWidth = 2;
ln.Color = [0 0.5 0.5];
ln.Marker = 'o';
ln.MarkerEdgeColor = 'b';

See Also
plot | loglog | scatter | Line Properties

Related Examples
• “Add Title and Axis Labels to Chart” on page 8-2
• “Specify Axis Limits” on page 9-2
• “Specify Axis Tick Values and Labels” on page 9-9
• Create Plot
• MATLAB Plot Gallery

 Create 2-D Line Plot

1-29

https://www.mathworks.com/products/matlab/plot-gallery.html

Create Line Plot with Markers
Adding markers to a line plot can be a useful way to distinguish multiple lines or to highlight
particular data points. Add markers in one of these ways:

• Include a marker symbol in the line-specification input argument, such as plot(x,y,'-s').
• Specify the Marker property as a name-value pair, such as plot(x,y,'Marker','s').

For a list of marker options, see “Supported Marker Symbols” on page 1-36.

Add Markers to Line Plot

Create a line plot. Display a marker at each data point by including the line-specification input
argument when calling the plot function. For example, use '-o' for a solid line with circle markers.

x = linspace(0,10,100);
y = exp(x/10).*sin(4*x);
plot(x,y,'-o')

If you specify a marker symbol and do not specify a line style, then plot displays only the markers
with no line connecting them.

plot(x,y,'o')

1 Line Plots

1-30

Alternatively, you can add markers to a line by setting the Marker property as a name-value pair. For
example, plot(x,y,'Marker','o') plots a line with circle markers.

Specify Marker Size and Color

Create a line plot with markers. Customize the markers by setting these properties using name-value
pair arguments with the plot function:

• MarkerSize - Marker size, which is specified as a positive value.
• MarkerEdgeColor - Marker outline color, which is specified as a color name or an RGB triplet.
• MarkerFaceColor - Marker interior color, which is specified as a color name or an RGB triplet.

Specify the colors using either a character vector of a color name, such as 'red', or an RGB triplet,
such as [0.4 0.6 0.7]. An RGB triplet is a three-element row vector whose elements specify the
intensities of the red, green, and blue components of the color. The intensities must be in the range
[0,1].

x = linspace(0,10,50);
y = sin(x);
plot(x,y,'-s','MarkerSize',10,...
 'MarkerEdgeColor','red',...
 'MarkerFaceColor',[1 .6 .6])

 Create Line Plot with Markers

1-31

Control Placement of Markers Along Line

Create a line plot with 1,000 data points, add asterisks markers, and control the marker positions
using the MarkerIndices property. Set the property to the indices of the data points where you
want to display markers. Display a marker every tenth data point, starting with the first data point.

x = linspace(0,10,1000);
y = exp(x/10).*sin(4*x);
plot(x,y,'-*','MarkerIndices',1:10:length(y))

1 Line Plots

1-32

Display Markers at Maximum and Minimum Data Points

Create a vector of random data and find the index of the minimum and maximum values. Then, create
a line plot of the data. Display red markers at the minimum and maximum data values by setting the
MarkerIndices property to a vector of the index values.

x = 1:100;
y = rand(100,1);
idxmin = find(y == max(y));
idxmax = find(y == min(y));
plot(x,y,'-p','MarkerIndices',[idxmin idxmax],...
 'MarkerFaceColor','red',...
 'MarkerSize',15)

 Create Line Plot with Markers

1-33

Revert to Default Marker Locations

Modify the marker locations, then revert back to the default locations.

Create a line plot and display large, square markers every five data points. Assign the chart line
object to the variable p so that you can access its properties after it is created.

x = linspace(0,10,25);
y = x.^2;
p = plot(x,y,'-s');
p.MarkerSize = 10;
p.MarkerIndices = 1:5:length(y);

1 Line Plots

1-34

Reset the MarkerIndices property to the default value, which is a vector of all index values from 1
to the number of data points.

p.MarkerIndices = 1:length(y);

 Create Line Plot with Markers

1-35

Supported Marker Symbols
Marker Description Resulting Marker
"o" Circle

"+" Plus sign

"*" Asterisk

"." Point

"x" Cross

"_" Horizontal line

"|" Vertical line

"square" Square

"diamond" Diamond

1 Line Plots

1-36

Marker Description Resulting Marker
"^" Upward-pointing triangle

"v" Downward-pointing triangle

">" Right-pointing triangle

"<" Left-pointing triangle

"pentagram" Pentagram

"hexagram" Hexagram

"none" No markers Not applicable

The line-specification input argument does not support marker options that are more than one
character. Use the one character alternative or set the Marker property instead.

See Also
Functions
plot | scatter | loglog | plot3

Properties
Line

 Create Line Plot with Markers

1-37

Combine Line and Bar Charts Using Two y-Axes

This example shows how to combine a line chart and a bar chart using two different y-axes. It also
shows how to customize the line and bars.

Create a chart that has two y-axes using yyaxis. Graphics functions target the active side of the
chart. Control the active side using yyaxis. Plot a bar chart using the left y-axis. Plot a line chart
using the right y-axis. Assign the bar series object and the chart line object to variables.

days = 0:5:35;
conc = [515 420 370 250 135 120 60 20];
temp = [29 23 27 25 20 23 23 17];

yyaxis left
b = bar(days,temp);
yyaxis right
p = plot(days,conc);

Add a title and axis labels to the chart.

title('Temperature and Concentration Data')
xlabel('Day')
yyaxis left
ylabel('Temperature (\circC)')
yyaxis right
ylabel('Concentration')

1 Line Plots

1-38

Change the width of the chart line and change the bar colors.

p.LineWidth = 3;
b.FaceColor = [0 0.447 0.741];

 Combine Line and Bar Charts Using Two y-Axes

1-39

See Also
Functions
bar | plot | yyaxis | xlabel | ylabel | title | hold

Properties
Line | Bar

1 Line Plots

1-40

Combine Line and Stem Plots

This example shows how to combine a line plot and two stem plots. Then, it shows how to add a title,
axis labels, and a legend.

Create the data and plot a line.

x = linspace(0,2*pi,60);
a = sin(x);
b = cos(x);
plot(x,a+b)

Add two stem plots to the axes. Prevent new plots from replacing existing plots using hold on.

hold on
stem(x,a)
stem(x,b)
hold off

 Combine Line and Stem Plots

1-41

Add a title, axis labels, and a legend. Specify the legend descriptions in the order that you create the
plots.

title('Linear Combination of Two Functions')
xlabel('Time in \musecs')
ylabel('Magnitude')
legend('a+b','a = sin(x)','b = cos(x)')

1 Line Plots

1-42

See Also
plot | stem | hold

 Combine Line and Stem Plots

1-43

Overlay Stairstep Plot and Line Plot

This example shows how to overlay a line plot on a stairstep plot.

Define the data to plot.

alpha = 0.01;
beta = 0.5;
t = 0:10;
f = exp(-alpha*t).*sin(beta*t);

Display f as a stairstep plot. Use the hold function to retain the stairstep plot. Add a line plot of f
using a dashed line with star markers.

stairs(t,f)
hold on
plot(t,f,'--*')
hold off

Use the axis function to set the axis limits. Label the x-axis and add a title to the graph.

axis([0,10,-1.2,1.2])
xlabel('t = 0:10')
title('Stairstep plot of e^{-(\alpha*t)} sin\beta*t')

1 Line Plots

1-44

See Also
stairs | plot | axis

 Overlay Stairstep Plot and Line Plot

1-45

Line Plot with Confidence Bounds

Create a plot with confidence bounds using the fill function to draw the confidence bounds and the
plot function to draw the data points. Use dot notation syntax object.PropertyName to customize
the look of the plot.

x = 0:0.2:10;
y = besselj(0, x);

xconf = [x x(end:-1:1)] ;
yconf = [y+0.15 y(end:-1:1)-0.15];

figure
p = fill(xconf,yconf,'red');
p.FaceColor = [1 0.8 0.8];
p.EdgeColor = 'none';

hold on
plot(x,y,'ro')
hold off

1 Line Plots

1-46

Plot Imaginary and Complex Data

Plot One Complex Input

This example shows how to plot the imaginary part versus the real part of a complex vector, z. With
complex inputs, plot(z) is equivalent to plot(real(z),imag(z)), where real(z) is the real
part of z and imag(z) is the imaginary part of z.

Define z as a vector of eigenvalues of a random matrix.

z = eig(randn(20));

Plot the imaginary part of z versus the real part of z. Display a circle at each data point.

figure
plot(z,'o')

Plot Multiple Complex Inputs

This example shows how to plot the imaginary part versus the real part of two complex vectors, z1
and z2. If you pass multiple complex arguments to plot, such as plot(z1,z2), then MATLAB®
ignores the imaginary parts of the inputs and plots the real parts. To plot the real part versus the
imaginary part for multiple complex inputs, you must explicitly pass the real parts and the imaginary
parts to plot.

Define the complex data.

 Plot Imaginary and Complex Data

1-47

x = -2:0.25:2;
z1 = x.^exp(-x.^2);
z2 = 2*x.^exp(-x.^2);

Find the real part and imaginary part of each vector using the real and imag functions. Then, plot
the data.

real_z1 = real(z1);
imag_z1 = imag(z1);

real_z2 = real(z2);
imag_z2 = imag(z2);

plot(real_z1,imag_z1,'g*',real_z2,imag_z2,'bo')

See Also
plot | real | imag

1 Line Plots

1-48

Pie Charts, Bar Plots, and Histograms

• “Types of Bar Graphs” on page 2-2
• “Modify Baseline of Bar Graph” on page 2-8
• “Overlay Bar Graphs” on page 2-11
• “Bar Chart with Error Bars” on page 2-15
• “Color 3-D Bars by Height” on page 2-16
• “Compare Data Sets Using Overlayed Area Graphs” on page 2-18
• “Offset Pie Slice with Greatest Contribution” on page 2-22
• “Add Legend to Pie Chart” on page 2-24
• “Label Pie Chart With Text and Percentages” on page 2-26
• “Color Analysis with Bivariate Histogram” on page 2-28
• “Control Categorical Histogram Display” on page 2-34
• “Replace Discouraged Instances of hist and histc” on page 2-41

2

Types of Bar Graphs

Bar graphs are useful for viewing results over a period of time, comparing results from different data
sets, and showing how individual elements contribute to an aggregate amount.

By default, bar graphs represents each element in a vector or matrix as one bar, such that the bar
height is proportional to the element value.

2-D Bar Graph

The bar function distributes bars along the x-axis. Elements in the same row of a matrix are grouped
together. For example, if a matrix has five rows and three columns, then bar displays five groups of
three bars along the x-axis. The first cluster of bars represents the elements in the first row of Y.

Y = [5,2,1
 8,7,3
 9,8,6
 5,5,5
 4,3,2];
figure
bar(Y)

To stack the elements in a row, specify the stacked option for the bar function.

figure
bar(Y,'stacked')

2 Pie Charts, Bar Plots, and Histograms

2-2

2-D Horizontal Bar Graph

The barh function distributes bars along the y-axis. Elements in the same row of a matrix are
grouped together.

Y = [5,2,1
 8,7,3
 9,8,6
 5,5,5
 4,3,2];
figure
barh(Y)

 Types of Bar Graphs

2-3

3-D Bar Graph

The bar3 function draws each element as a separate 3-D block and distributes the elements of each
column along the y-axis.

Y = [5,2,1
 8,7,3
 9,8,6
 5,5,5
 4,3,2];
figure
bar3(Y)

2 Pie Charts, Bar Plots, and Histograms

2-4

To stack the elements in a row, specify the stacked option for the bar3 function.

figure
bar3(Y,'stacked')

 Types of Bar Graphs

2-5

3-D Horizontal Bar Graph

The bar3h function draws each element as a separate 3-D block and distributes the elements of each
column along the z-axis.

Y = [5,2,1
 8,7,3
 9,8,6
 5,5,5
 4,3,2];
figure
bar3h(Y)

2 Pie Charts, Bar Plots, and Histograms

2-6

See Also
bar | barh | bar3 | bar3h

 Types of Bar Graphs

2-7

Modify Baseline of Bar Graph

This example shows how to modify properties of the baseline of a bar graph.

Create a bar graph of a four-column matrix. The bar function creates a bar series for each column of
the matrix. Return the four bar series as b.

Y = [5, 4, 3, 5;
 3, 6, 3, 1;
 4, 3, 5, 4];
b = bar(Y);

All bar series in a graph share the same baseline. Change the value of the baseline to 2 by setting the
BaseValue property for any of the bar series. Use dot notation to set properties.

b(1).BaseValue = 2;

2 Pie Charts, Bar Plots, and Histograms

2-8

Change the baseline to a thick, red dotted line.

b(1).BaseLine.LineStyle = ':';
b(1).BaseLine.Color = 'red';
b(1).BaseLine.LineWidth = 2;

 Modify Baseline of Bar Graph

2-9

See Also
bar | barh

2 Pie Charts, Bar Plots, and Histograms

2-10

Overlay Bar Graphs

This example shows how to overlay two bar graphs and specify the bar colors and widths. Then, it
shows how to add a legend, display the grid lines, and specify the tick labels.

Create a bar graph. Set the bar width to 0.5 so that the bars use 50% of the available space. Specify
the bar color by setting the FaceColor property to an RGB color value.

x = [1 2 3 4 5];
temp_high = [37 39 46 56 67];
w1 = 0.5;
bar(x,temp_high,w1,'FaceColor',[0.2 0.2 0.5])

Plot a second bar graph over the first bar graph. Use the hold function to retain the first graph. Set
the bar width to .25 so that the bars use 25% of the available space. Specify a different RGB color
value for the bar color.

temp_low = [22 24 32 41 50];
w2 = .25;
hold on
bar(x,temp_low,w2,'FaceColor',[0 0.7 0.7])
hold off

 Overlay Bar Graphs

2-11

Add grid lines, a y-axis label, and a legend in the upper left corner. Specify the legend descriptions in
the order that you create the graphs.

grid on
ylabel('Temperature (\circF)')
legend({'Average High','Average Low'},'Location','northwest')

2 Pie Charts, Bar Plots, and Histograms

2-12

Specify the x-axis tick labels by setting the XTick and XTickLabel properties of the axes object. The
XTick property specifies tick value locations along the x-axis. The XTickLabel property specifies
the text to use at each tick value. Rotate the labels using the XTickLabelRotation property. Use
dot notation to set properties.

ax = gca;
ax.XTick = [1 2 3 4 5];
ax.XTickLabels = {'January','February','March','April','May'};
ax.XTickLabelRotation = 45;

 Overlay Bar Graphs

2-13

See Also
bar | barh | hold

2 Pie Charts, Bar Plots, and Histograms

2-14

Bar Chart with Error Bars

Create a bar chart with error bars using both the bar and errorbar functions.

x = 1:13;
data = [37.6 24.5 14.6 18.1 19.5 8.1 28.5 7.9 3.3 4.1 7.9 1.9 4.3]';
errhigh = [2.1 4.4 0.4 3.3 2.5 0.4 1.6 0.8 0.6 0.8 2.2 0.9 1.5];
errlow = [4.4 2.4 2.3 0.5 1.6 1.5 4.5 1.5 0.4 1.2 1.3 0.8 1.9];

bar(x,data)

hold on

er = errorbar(x,data,errlow,errhigh);
er.Color = [0 0 0];
er.LineStyle = 'none';

hold off

See Also
bar | hold | errorbar

 Bar Chart with Error Bars

2-15

Color 3-D Bars by Height

This example shows how to modify a 3-D bar plot by coloring each bar according to its height.

Create a 3-D bar graph of data from the magic function. Return the surface objects used to create
the bar graph in array b. Add a colorbar to the graph.

Z = magic(5);
b = bar3(Z);
colorbar

For each surface object, get the array of z-coordinates from the ZData property. Use the array to set
the CData property, which defines the vertex colors. Interpolate the face colors by setting the
FaceColor properties of the surface objects to 'interp'. Use dot notation to query and set
properties.

for k = 1:length(b)
 zdata = b(k).ZData;
 b(k).CData = zdata;
 b(k).FaceColor = 'interp';
end

2 Pie Charts, Bar Plots, and Histograms

2-16

The height of each bar determines its color. You can estimate the bar heights by comparing the bar
colors to the colorbar.

See Also
bar3 | colorbar

 Color 3-D Bars by Height

2-17

Compare Data Sets Using Overlayed Area Graphs

This example shows how to compare two data sets by overlaying their area graphs.

Overlay Two Area Graphs

Create the sales and expenses data from the years 2004 to 2008.

years = 2004:2008;
sales = [51.6 82.4 90.8 59.1 47.0];
expenses = [19.3 34.2 61.4 50.5 29.4];

Display sales and expenses as two separate area graphs in the same axes. First, plot an area graph of
sales. Change the color of the area graph by setting the FaceColor and EdgeColor properties
using RGB triplet color values.

area(years,sales,'FaceColor',[0.5 0.9 0.6],'EdgeColor',[0 0.5 0.1])

Use the hold command to prevent a new graph from replacing the existing graph. Plot a second area
graph of expenses. Then, set the hold state back to off.

hold on
area(years,expenses,'FaceColor',[0.7 0.7 0.7],'EdgeColor','k')
hold off

2 Pie Charts, Bar Plots, and Histograms

2-18

Add Grid Lines

Set the tick marks along the x-axis to correspond to whole years. Draw a grid line for each tick mark.
Display the grid lines on top of the area graphs by setting the Layer property. Use dot notation to set
properties.

ax = gca; % current axes
ax.XTick = years;
ax.XGrid = 'on';
ax.Layer = 'top';

 Compare Data Sets Using Overlayed Area Graphs

2-19

Add Title, Axis Labels, and Legend

Give the graph a title and add axis labels. Add a legend to the graph to indicate the areas of profits
and expenses.

title('Profit Margin for 2004 to 2008')
xlabel('Years')
ylabel('Expenses + Profits = Sales in 1000s')
legend('Profits','Expenses')

2 Pie Charts, Bar Plots, and Histograms

2-20

See Also
area | hold | legend

 Compare Data Sets Using Overlayed Area Graphs

2-21

Offset Pie Slice with Greatest Contribution

This example shows how to create a pie graph and automatically offset the pie slice with the greatest
contribution.

Set up a three-column array, X, so that each column contains yearly sales data for a specific product
over a 5-year period.

X = [19.3, 22.1, 51.6
 34.2, 70.3, 82.4
 61.4, 82.9, 90.8
 50.5, 54.9, 59.1
 29.4, 36.3, 47.0];

Calculate the total sales for each product over the 5-year period by taking the sum of each column.
Store the results in product_totals.

product_totals = sum(X);

Use the max function to find the largest element in product_totals and return the index of this
element, ind.

[c,ind] = max(product_totals);

Use the pie function input argument, explode, to offset a pie slice. The explode argument is a
vector of zero and nonzero values where the nonzero values indicate the slices to offset. Initialize
explode as a three-element vector of zeros.

explode = zeros(1,3);

Use the index of the maximum element in product_totals to set the corresponding explode
element to 1.

explode(ind) = 1;

Create a pie chart of the sales totals for each product and offset the pie slice for the product with the
largest total sales.

figure
pie(product_totals,explode)
title('Sales Contributions of Three Products')

2 Pie Charts, Bar Plots, and Histograms

2-22

See Also
pie | max | zeros

Related Examples
• “Add Legend to Pie Chart” on page 2-24

 Offset Pie Slice with Greatest Contribution

2-23

Add Legend to Pie Chart

This example shows how to add a legend to a pie chart that displays a description for each slice.

Define x and create a pie chart.

x = [1,2,3];
figure
pie(x)

Specify the description for each pie slice in the cell array labels. Specify the descriptions in the
order that you specified the data in x.

labels = {'Product A','Product B','Product C'};

Display a horizontal legend below the pie chart. Pass the descriptions contained in labels to the
legend function. Set the legend's Location property to 'southoutside' and its Orientation
property to 'horizontal'.

legend(labels,'Location','southoutside','Orientation','horizontal')

2 Pie Charts, Bar Plots, and Histograms

2-24

See Also
pie | legend

Related Examples
• “Offset Pie Slice with Greatest Contribution” on page 2-22

 Add Legend to Pie Chart

2-25

Label Pie Chart With Text and Percentages

When you create a pie chart, MATLAB labels each pie slice with the percentage of the whole that
slice represents. You can change the labels to show different text.

Simple Text Labels

Create a pie chart with simple text labels.

x = [1,2,3];
pie(x,{'Item A','Item B','Item C'})

Labels with Percentages and Text

Create a pie chart with labels that contain custom text and the precalculated percent values for each
slice.

Create the pie chart and specify an output argument, p, to contain the text and patch objects created
by the pie function. The pie function creates one text object and one patch object for each pie slice.

x = [1,2,3];
p = pie(x);

Get the percent contributions for each pie slice from the String properties of the text objects.Then,
specify the text that you want in the cell array txt. Concatenate the text with the associated percent
values in the cell array combinedtxt.

2 Pie Charts, Bar Plots, and Histograms

2-26

pText = findobj(p,'Type','text');
percentValues = get(pText,'String');
txt = {'Item A: ';'Item B: ';'Item C: '};
combinedtxt = strcat(txt,percentValues);

Change the labels by setting the String properties of the text objects to combinedtxt.

pText(1).String = combinedtxt(1);
pText(2).String = combinedtxt(2);
pText(3).String = combinedtxt(3);

See Also
pie | findobj | cell2mat

Related Examples
• “Add Legend to Pie Chart” on page 2-24

 Label Pie Chart With Text and Percentages

2-27

Color Analysis with Bivariate Histogram

This example shows how to adjust the color scale of a bivariate histogram plot to reveal additional
details about the bins.

Load the image peppers.png, which is a color photo of several types of peppers and other
vegetables. The unsigned 8-bit integer array rgb contains the image data.

rgb = imread('peppers.png');
imshow(rgb)

Plot a bivariate histogram of the red and green RGB values for each pixel to visualize the color
distribution.

r = rgb(:,:,1);
g = rgb(:,:,2);
b = rgb(:,:,3);
histogram2(r,g,'DisplayStyle','tile','ShowEmptyBins','on', ...
 'XBinLimits',[0 255],'YBinLimits',[0 255]);
axis equal
colorbar
xlabel('Red Values')

2 Pie Charts, Bar Plots, and Histograms

2-28

ylabel('Green Values')
title('Green vs. Red Pixel Components')

The histogram is heavily weighted towards the bottom of the color scale because there are a few bins
with very large counts. This results in most of the bins displaying as the first color in the colormap,
blue. Without additional detail it is hard to draw any conclusions about which color is more dominant.

To view more detail, rescale the histogram color scale by setting the CLim property of the axes to
have a range between 0 and 500. The result is that the histogram bins whose count is 500 or greater
display as the last color in the colormap, yellow. Since most of the bin counts are within this smaller
range, there is greater variation in the color of bins displayed.

ax = gca;
ax.CLim = [0 500];

 Color Analysis with Bivariate Histogram

2-29

Use a similar method to compare the dominance of red vs. blue and green vs. blue.

histogram2(r,b,'DisplayStyle','tile','ShowEmptyBins','on',...
 'XBinLimits',[0 255],'YBinLimits',[0 255]);
axis equal
colorbar
xlabel('Red Values')
ylabel('Blue Values')
title('Blue vs. Red Pixel Components')
ax = gca;
ax.CLim = [0 500];

2 Pie Charts, Bar Plots, and Histograms

2-30

histogram2(g,b,'DisplayStyle','tile','ShowEmptyBins','on',...
 'XBinLimits',[0 255],'YBinLimits',[0 255]);
axis equal
colorbar
xlabel('Green Values')
ylabel('Blue Values')
title('Green vs. Blue Pixel Components')
ax = gca;
ax.CLim = [0 500];

 Color Analysis with Bivariate Histogram

2-31

In each case, blue is the least dominant color signal. Looking at all three histograms, red appears to
be the dominant color.

Confirm the results by creating a color histogram in the RGB color space. All three color components
have spikes for smaller RGB values. However, the values above 100 occur more frequently in the red
component than any other.

histogram(r,'BinMethod','integers','FaceColor','r','EdgeAlpha',0,'FaceAlpha',1)
hold on
histogram(g,'BinMethod','integers','FaceColor','g','EdgeAlpha',0,'FaceAlpha',0.7)
histogram(b,'BinMethod','integers','FaceColor','b','EdgeAlpha',0,'FaceAlpha',0.7)
xlabel('RGB value')
ylabel('Frequency')
title('Color histogram in RGB color space')
xlim([0 257])

2 Pie Charts, Bar Plots, and Histograms

2-32

See Also
histogram | histogram2

 Color Analysis with Bivariate Histogram

2-33

Control Categorical Histogram Display

This example shows how to use histogram to effectively view categorical data. You can use the
name-value pairs 'NumDisplayBins', 'DisplayOrder', and 'ShowOthers' to change the display
of a categorical histogram. These options help you to better organize the data and reduce noise in the
plot.

Create Categorical Histogram

The sample file outages.csv contains data representing electric utility outages in the United States.
The file contains six columns: Region, OutageTime, Loss, Customers, RestorationTime, and
Cause.

Read the outages.csv file as a table. Use the 'Format' option to specify the kind of data each
column contains: categorical ('%C'), floating-point numeric ('%f'), or datetime ('%D'). Index into
the first few rows of data to see the variables.

data_formats = '%C%D%f%f%D%C';
C = readtable('outages.csv','Format',data_formats);
first_few_rows = C(1:10,:)

first_few_rows=10×6 table
 Region OutageTime Loss Customers RestorationTime Cause
 _________ ________________ ______ __________ ________________ _______________

 SouthWest 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50 winter storm
 SouthEast 2003-01-23 00:49 530.14 2.1204e+05 NaT winter storm
 SouthEast 2003-02-07 21:15 289.4 1.4294e+05 2003-02-17 08:14 winter storm
 West 2004-04-06 05:44 434.81 3.4037e+05 2004-04-06 06:10 equipment fault
 MidWest 2002-03-16 06:18 186.44 2.1275e+05 2002-03-18 23:23 severe storm
 West 2003-06-18 02:49 0 0 2003-06-18 10:54 attack
 West 2004-06-20 14:39 231.29 NaN 2004-06-20 19:16 equipment fault
 West 2002-06-06 19:28 311.86 NaN 2002-06-07 00:51 equipment fault
 NorthEast 2003-07-16 16:23 239.93 49434 2003-07-17 01:12 fire
 MidWest 2004-09-27 11:09 286.72 66104 2004-09-27 16:37 equipment fault

Plot a categorical histogram of the Cause variable. Specify an output argument to return a handle to
the histogram object.

h = histogram(C.Cause);
xlabel('Cause of Outage')
ylabel('Frequency')
title('Most Common Power Outage Causes')

2 Pie Charts, Bar Plots, and Histograms

2-34

Change the normalization of the histogram to use the 'probability' normalization, which displays
the relative frequency of each outage cause.

h.Normalization = 'probability';
ylabel('Relative Frequency')

 Control Categorical Histogram Display

2-35

Change Display Order

Use the 'DisplayOrder' option to sort the bins from largest to smallest.

h.DisplayOrder = 'descend';

2 Pie Charts, Bar Plots, and Histograms

2-36

Truncate Number of Bars Displayed

Use the 'NumDisplayBins' option to display only three bars in the plot. The displayed probabilities
no longer add to 1 since the undisplayed data is still taken into account for normalization.

h.NumDisplayBins = 3;

 Control Categorical Histogram Display

2-37

Summarize Excluded Data

Use the 'ShowOthers' option to summarize all of the excluded bars, so that the displayed
probabilities again add to 1.

h.ShowOthers = 'on';

2 Pie Charts, Bar Plots, and Histograms

2-38

Limit Normalization to Display Data

Prior to R2017a, the histogram and histcounts functions used only binned data to calculate
normalizations. This behavior meant that if some of the data ended up outside the bins, it was ignored
for the purposes of normalization. However, in MATLAB® R2017a, the behavior changed to always
normalize using the total number of elements in the input data. The new behavior is more intuitive,
but if you prefer the old behavior, then you need to take a few special steps to limit the normalization
only to the binned data.

Instead of normalizing over all of the input data, you can limit the probability normalization to the
data that is displayed in the histogram. Simply update the Data property of the histogram object to
remove the other categories. The Categories property reflects the categories displayed in the
histogram. Use setdiff to compare the two property values and remove any category from Data
that is not in Categories. Then remove all of the resulting undefined categorical elements from
the data, leaving only elements in the displayed categories.

h.ShowOthers = 'off';
cats_to_remove = setdiff(categories(h.Data),h.Categories);
h.Data = removecats(h.Data,cats_to_remove);
h.Data = rmmissing(h.Data);

 Control Categorical Histogram Display

2-39

The normalization is now based only on the three remaining categories, so the three bars add to 1.

See Also
histogram | categorical | histogram

2 Pie Charts, Bar Plots, and Histograms

2-40

Replace Discouraged Instances of hist and histc

In this section...
“Old Histogram Functions (hist, histc)” on page 2-41
“Recommended Histogram Functions” on page 2-41
“Differences Requiring Code Updates” on page 2-41

Old Histogram Functions (hist, histc)
Earlier versions of MATLAB use the hist and histc functions as the primary way to create
histograms and calculate histogram bin counts. These functions, while good for some general
purposes, have limited overall capabilities. The use of hist and histc in new code is discouraged
for these reasons (among others):

• After using hist to create a histogram, modifying properties of the histogram is difficult and
requires recomputing the entire histogram.

• The default behavior of hist is to use 10 bins, which is not suitable for many data sets.
• Plotting a normalized histogram requires manual computations.
• hist and histc do not have consistent behavior.

Recommended Histogram Functions
The histogram, histcounts, and discretize functions dramatically advance the capabilities of
histogram creation and calculation in MATLAB, while still promoting consistency and ease of use.
histogram, histcounts, and discretize are the recommended histogram creation and
computation functions for new code.

Of particular note are the following changes, which stand as improvements over hist and histc:

• histogram can return a histogram object. You can use the object to modify properties of the
histogram.

• Both histogram and histcounts have automatic binning and normalization capabilities, with
several common options built-in.

• histcounts is the primary calculation function for histogram. The result is that the functions
have consistent behavior.

• discretize provides additional options and flexibility for determining the bin placement of each
element.

Differences Requiring Code Updates
Despite the aforementioned improvements, there are several important differences between the old
and now recommended functions, which might require updating your code. The tables summarize the
differences between the functions and provide suggestions for updating code.

 Replace Discouraged Instances of hist and histc

2-41

Code Updates for hist

Difference Old behavior with hist New behavior with
histogram

Input matrices hist creates a histogram for
each column of an input matrix
and plots the histograms side-
by-side in the same figure.

A = randn(100,2);
hist(A)

histogram treats the input
matrix as a single tall vector and
creates a single histogram. To
plot multiple histograms, create
a different histogram object for
each column of data. Use the
hold on command to plot the
histograms in the same figure.

A = randn(100,2);
h1 = histogram(A(:,1),10)
edges = h1.BinEdges;
hold on
h2 = histogram(A(:,2),edges)

The above code example uses
the same bin edges for each
histogram, but in some cases it
is better to set the BinWidth of
each histogram to be the same
instead. Also, for display
purposes, it might be helpful to
set the FaceAlpha property of
each histogram, as this affects
the transparency of overlapping
bars.

Bin specification hist accepts the bin centers as
a second input.

histogram accepts the bin
edges as a second input.

To convert bin centers into bin
edges for use with histogram,
see “Convert Bin Centers to Bin
Edges” on page 2-46.

Note In cases where the bin
centers used with hist are
integers, such as
hist(A,-3:3), use the new
built-in binning method of
histogram for integers.

histogram(A,'BinLimits',[-3,3],'BinMethod','integers')

2 Pie Charts, Bar Plots, and Histograms

2-42

Difference Old behavior with hist New behavior with
histogram

Output arguments hist returns the bin counts as
an output argument, and
optionally can return the bin
centers as a second output
argument.

A = randn(100,1);
[N, Centers] = hist(A)

histogram returns a histogram
object as an output argument.
The object contains many
properties of interest (bin
counts, bin edges, and so on).
You can modify aspects of the
histogram by changing its
property values. For more
information, see histogram.

A = randn(100,1);
h = histogram(A);
N = h.Values
Edges = h.BinEdges

Note To calculate bin counts
(without plotting a histogram),
replace [N, Centers] =
hist(A) with [N,edges] =
histcounts(A,nbins).

Default number of bins hist uses 10 bins by default. Both histogram and
histcounts use an automatic
binning algorithm by default.
The number of bins is
determined by the size and
spread of the input data.

A = randn(100,1);
histogram(A)
histcounts(A)

Bin limits hist uses the minimum and
maximum finite data values to
determine the left and right
edges of the first and last bar in
the plot. -Inf and Inf are
included in the first and last bin,
respectively.

If BinLimits is not set, then
histogram uses rational bin
limits based on, but not exactly
equal to, the minimum and
maximum finite data values.
histogram ignores Inf values
unless one of the bin edges
explicitly specifies Inf or -Inf
as a bin edge.

To reproduce the results of
hist(A) for finite data (no Inf
values), use 10 bins and
explicitly set BinLimits to the
minimum and maximum data
values.

A = randi(5,100,1);
histogram(A,10,'BinLimits',[min(A) max(A)])

 Replace Discouraged Instances of hist and histc

2-43

Code Updates for histc

Difference Old behavior with histc New behavior with
histcounts

Input matrices histc calculates the bin counts
for each column of input data.
For an input matrix of size m-by-
n, histc returns a matrix of bin
counts of size length(edges)-
by-n.

A = randn(100,10);
edges = -4:4;
N = histc(A,edges)

histcounts treats the input
matrix as a single tall vector and
calculates the bin counts for the
entire matrix.

A = randn(100,10);
edges = -4:4;
N = histcounts(A,edges)

Use a for-loop to calculate bin
counts over each column.

A = randn(100,10);
nbins = 10;
N = zeros(nbins, size(A,2));
for k = 1:size(A,2)
 N(:,k) = histcounts(A(:,k),nbins);
end

If performance is a problem due
to a large number of columns in
the matrix, then consider
continuing to use histc for the
column-wise bin counts.

2 Pie Charts, Bar Plots, and Histograms

2-44

Difference Old behavior with histc New behavior with
histcounts

Values included in last bin histc includes an element
A(i) in the last bin if A(i) ==
edges(end). The output, N, is a
vector with length(edges)
elements containing the bin
counts. Values falling outside
the bins are not counted.

histcounts includes an
element A(i) in the last bin if
edges(end-1) <= A(i) <=
edges(end). In other words,
histcounts combines the last
two bins from histc into a
single final bin. The output, N, is
a vector with
length(edges)-1 elements
containing the bin counts. If you
specify the bin edges, then
values falling outside the bins
are not counted. Otherwise,
histcounts automatically
determines the proper bin edges
to use to include all of the data.

A = 1:4;
edges = [1 2 2.5 3]
N = histcounts(A)
N = histcounts(A,edges)

The last bin from histc is
primarily useful to count
integers. To do this integer
counting with histcounts, use
the 'integers' bin method:

N = histcounts(A,'BinMethod','integers');

 Replace Discouraged Instances of hist and histc

2-45

Difference Old behavior with histc New behavior with
histcounts

Output arguments histc returns the bin counts as
an output argument, and
optionally can return the bin
indices as a second output
argument.

A = randn(15,1);
edges = -4:4;
[N,Bin] = histc(A,edges)

• For bin count calculations
like N = histc(A,edges)
or [N,bin] =
histc(A,edges), use
histcounts. The
histcounts function
returns the bin counts as an
output argument, and
optionally can return the bin
edges as a second output, or
the bin indices as a third
output.

A = randn(15,1);
[N,Edges,Bin] = histcounts(A)

• For bin placement
calculations like [~,Bin] =
histc(A,edges), use
discretize. The
discretize function offers
additional options for
determining the bin
placement of each element.

A = randn(15,1);
edges = -4:4;
Bin = discretize(A,edges)

Convert Bin Centers to Bin Edges

The hist function accepts bin centers, whereas the histogram function accepts bin edges. To
update code to use histogram, you might need to convert bin centers to bin edges to reproduce
results achieved with hist.

For example, specify bin centers for use with hist. These bins have a uniform width.

A = [-9 -6 -5 -2 0 1 3 3 4 7];
centers = [-7.5 -2.5 2.5 7.5];
hist(A,centers)

2 Pie Charts, Bar Plots, and Histograms

2-46

To convert the bin centers into bin edges, calculate the midpoint between consecutive values in
centers. This method reproduces the results of hist for both uniform and nonuniform bin widths.

d = diff(centers)/2;
edges = [centers(1)-d(1), centers(1:end-1)+d, centers(end)+d(end)];

The hist function includes values falling on the right edge of each bin (the first bin includes both
edges), whereas histogram includes values that fall on the left edge of each bin (and the last bin
includes both edges). Shift the bin edges slightly to obtain the same bin counts as hist.

edges(2:end) = edges(2:end)+eps(edges(2:end))

edges = 1×5

 -10.0000 -5.0000 0.0000 5.0000 10.0000

Now, use histogram with the bin edges.

histogram(A,edges)

 Replace Discouraged Instances of hist and histc

2-47

2 Pie Charts, Bar Plots, and Histograms

2-48

Polar Plots

• “Plotting in Polar Coordinates” on page 3-2
• “Customize Polar Axes” on page 3-14
• “Compass Labels on Polar Axes” on page 3-22

3

Plotting in Polar Coordinates

These examples show how to create line plots, scatter plots, and histograms in polar coordinates.
They also show how to annotate and change axes limits on polar plots.

Create Polar Line Plot

Visualize the radiation pattern from an antenna in polar coordinates. Load the file
antennaData.mat, which contains the variables theta and rho. The variable rho is a measure of
how intensely the antenna radiates for each value of theta. Visualize this radiation pattern by
plotting the data in polar coordinates using the polarplot function.

load('antennaData.mat')

figure
polarplot(theta,rho)

Before R2022a, polar axes do not include degree symbols by default. To add them, get the polar axes
using pax = gca. Then modify the tick labels using pax.ThetaTickLabel =
string(pax.ThetaTickLabel) + char(176).

Multiple Polar Line Plots

Use hold on to retain the current polar axes and plot additional data using polarplot.

3 Polar Plots

3-2

rng('default')
noisy = rho + rand(size(rho));
hold on
polarplot(theta,noisy)
hold off

Annotating Polar Plots

Use annotation functions such as legend and title to label polar plots like other visualization
types.

legend('Original','With Noise')
title('Antenna Radiation Pattern')

 Plotting in Polar Coordinates

3-3

Change Polar Axes Limits

By default, negative values of the radius are plotted as positive values in the polar plot. Use rlim to
adjust the r-axis limit to include negative values.

rmin = min(rho);
rmax = max(rho);
rlim([rmin rmax])

3 Polar Plots

3-4

Change the theta-axis limits to 0 and 180 with thetalim.

thetalim([0 180])

 Plotting in Polar Coordinates

3-5

Create Polar Scatter Plot

Plot wind velocity data in polar coordinates. Load the file windData.dat, which includes the
variables direction, speed, humidity, and C. Visualize the wind patterns by plotting the data in
polar coordinates using the polarscatter function.

load('windData.mat')
polarscatter(direction,speed)

3 Polar Plots

3-6

Include a third data input to vary marker size and represent a third dimension.

polarscatter(direction,speed,humidity)

 Plotting in Polar Coordinates

3-7

Use formatting inputs to adjust marker display properties.

polarscatter(direction,speed,humidity,C,'filled')

3 Polar Plots

3-8

Create Polar Histogram Plot

Visualize the data using the polarhistogram function, which produces a visual representation
known as a wind rose.

polarhistogram(direction)

 Plotting in Polar Coordinates

3-9

Specify a bin determination algorithm. The polarhistogram function has a variety of bin number
and bin width determination algorithms to choose from within the BinMethod field.

polarhistogram(direction,'BinMethod','sqrt')

3 Polar Plots

3-10

Specify the number of bins and the bin width.

polarhistogram(direction,24,'BinWidth',.5)

 Plotting in Polar Coordinates

3-11

Specify a normalization method and adjust the display style to exclude any fill.

polarhistogram(direction,'Normalization','pdf','DisplayStyle','stairs')

3 Polar Plots

3-12

See Also
polarplot | thetaticks | rticks | rticklabels | thetaticklabels | PolarAxes

 Plotting in Polar Coordinates

3-13

Customize Polar Axes

You can modify certain aspects of polar axes in order to make the chart more readable. For example,
you can change the grid line locations and associated labels. You also can change the grid line colors
and label font size.

Create Polar Plot

Plot a line in polar coordinates and add a title.

theta = linspace(0,2*pi);
rho = 2*theta;
figure
polarplot(theta,rho)
title('My Polar Plot')

Before R2022a, polar axes do not include degree symbols by default. To add them, get the polar axes
using pax = gca. Then modify the tick labels using pax.ThetaTickLabel =
string(pax.ThetaTickLabel) + char(176).

Customize Polar Axes Using Properties

When you create a polar plot, MATLAB creates a PolarAxes object. PolarAxes objects have
properties that you can use to customize the appearance of the polar axes, such as the font size,
color, or ticks. For a full list, see PolarAxes Properties.

3 Polar Plots

3-14

Access the PolarAxes object using the gca function, such as pax = gca. Then, use pax with dot
notation to set properties, such as pax.FontSize = 14.

pax = gca

pax =
 PolarAxes (My Polar Plot) with properties:

 ThetaLim: [0 360]
 RLim: [0 14]
 ThetaAxisUnits: 'degrees'
 ThetaDir: 'counterclockwise'
 ThetaZeroLocation: 'right'

 Show all properties

pax.FontSize = 14;

theta-Axis Tick Values

Display lines along the theta-axis every 45 degrees. Specify the locations as a vector of increasing
values.

thetaticks(0:45:315)

 Customize Polar Axes

3-15

Display the theta-axis values in radians instead of degrees by setting the ThetaAxisUnits property.

pax = gca;
pax.ThetaAxisUnits = 'radians';

3 Polar Plots

3-16

Modify the theta-axis so that it increases in a clockwise direction. Also, rotate the theta-axis so that
the zero reference angle is on the left side.

pax = gca;
pax.ThetaDir = 'clockwise';
pax.ThetaZeroLocation = 'left';

 Customize Polar Axes

3-17

r-Axis Limits, Tick Values, and Labels

Change the limits of the r-axis so that the values range from -5 to 15. Display lines at the values -2, 3,
9, and 15. Then, change the labels that appear next to each line. Specify the labels as a cell array of
character vectors.

rlim([-5 15])
rticks([-2 3 9 15])
rticklabels({'r = -2','r = 3','r = 9','r = 15'})

3 Polar Plots

3-18

Grid Line and Label Colors

Use different colors for the theta-axis and r-axis grid lines and associated labels by setting the
ThetaColor and RColor properties. Change the width of the grid lines by setting the LineWidth
property.

Specify the colors using either a character vector of a color name, such as 'blue', or an RGB triplet.
An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green,
and blue components of the color. The intensities must be in the range [0,1], for example, [0.4 0.6
0.7].

pax = gca;
pax.ThetaColor = 'blue';
pax.RColor = [0 .5 0];

 Customize Polar Axes

3-19

Change the color of all the grid lines without affecting the labels by setting the GridColor property.

pax.GridColor = 'red';

3 Polar Plots

3-20

When you specify the GridColor property, the ThetaColor and RColor properties no longer affect
the grid lines. If you want the ThetaColor and RColor properties to affect the grid lines, then set
the GridColorMode property back to 'auto'.

See Also
polarplot | thetaticks | rticks | rticklabels | thetaticklabels | PolarAxes

Related Examples
• “Compass Labels on Polar Axes” on page 3-22

 Customize Polar Axes

3-21

Compass Labels on Polar Axes

This example shows how to plot data in polar coordinates. It also shows how to specify the angles at
which to draw grid lines and how to specify the labels.

Plot data in polar coordinates and display a circle marker at each data point.

theta = linspace(0,2*pi,50);
rho = 1 + sin(4*theta).*cos(2*theta);
polarplot(theta,rho,'o')

Use gca to access the polar axes object. Specify the angles at which to draw grid lines by setting the
ThetaTick property. Then, specify the label for each grid line by setting the ThetaTickLabel
property.

pax = gca;
angles = 0:45:360;
pax.ThetaTick = angles;
labels = {'E','NE','N','NW','W','SW','S','SE'};
pax.ThetaTickLabel = labels;

3 Polar Plots

3-22

See Also
polarplot | thetaticks | rticks | rticklabels | thetaticklabels | PolarAxes

Related Examples
• “Customize Polar Axes” on page 3-14

 Compass Labels on Polar Axes

3-23

Contour Plots

• “Label Contour Plot Levels” on page 4-2
• “Change Fill Colors for Contour Plot” on page 4-3
• “Highlight Specific Contour Levels” on page 4-5
• “Combine Contour Plot and Quiver Plot” on page 4-7
• “Contour Plot with Major and Minor Grid Lines” on page 4-9

4

Label Contour Plot Levels

This example shows how to label each contour line with its associated value.

The contour matrix, C, is an optional output argument returned by contour, contour3, and
contourf. The clabel function uses values from C to display labels for 2-D contour lines.

Display eight contour levels of the peaks function and label the contours. clabel labels only contour
lines that are large enough to contain an inline label.

Z = peaks;
figure
[C,h] = contour(Z,8);

clabel(C,h)
title('Contours Labeled Using clabel(C,h)')

To interactively select the contours to label using the mouse, pass the manual option to clabel, for
example, clabel(C,h,'manual'). This command displays a crosshair cursor when the mouse is
within the figure. Click the mouse to label the contour line closest to the cursor.

See Also
contour | contour3 | contourf | clabel

4 Contour Plots

4-2

Change Fill Colors for Contour Plot

This example shows how to change the colors used in a filled contour plot.

Change Colormap

Set the colors for the filled contour plot by changing the colormap. Pass the predefined colormap
name, hot, to the colormap function.

[X,Y,Z] = peaks;
figure
contourf(X,Y,Z,20)
colormap(hot)
title('Hot Colormap')

Control Mapping of Data Values to Colormap

Use only the colors in the center of the hot colormap by setting the colormap limits to a range much
larger than the range of values in matrix Z. The clim function controls the mapping of data values
into the colormap. Use this function to set the colormap limits.

clim([-20,20])
title('Center of Hot Colormap')

 Change Fill Colors for Contour Plot

4-3

Before R2022a, change the colormap limits using caxis([-20 20]).

See Also
contourf | colormap | clim

4 Contour Plots

4-4

Highlight Specific Contour Levels

This example shows how to highlight contours at particular levels.

Define Z as the matrix returned from the peaks function.

Z = peaks(100);

Round the minimum and maximum data values in Z and store these values in zmin and zmax,
respectively. Define zlevs as 40 values between zmin and zmax.

zmin = floor(min(Z(:)));
zmax = ceil(max(Z(:)));
zinc = (zmax - zmin) / 40;
zlevs = zmin:zinc:zmax;

Plot the contour lines.

figure
contour(Z,zlevs)

Define zindex as a vector of integer values between zmin and zmax indexed by 2.

zindex = zmin:2:zmax;

Retain the previous contour plot. Create a second contour plot and use zindex to highlight contour
lines at every other integer value. Set the line width to 2.

 Highlight Specific Contour Levels

4-5

hold on
contour(Z,zindex,'LineWidth',2)
hold off

See Also
contour | floor | ceil | min | max | hold

4 Contour Plots

4-6

Combine Contour Plot and Quiver Plot

Display contour lines and gradient vectors on the same plot.

Plot 10 contours of xe−x2 − y2 over a grid from -2 to 2 in the x and y directions.

[X,Y] = meshgrid(-2:0.2:2);
Z = X .* exp(-X.^2 - Y.^2);
contour(X,Y,Z,10)

Calculate the 2-D gradient of Z using the gradient function. The gradient function returns U as
the gradient in the x-direction and V as the gradient in the y-direction. Display arrows indicating the
gradient values using the quiver function.

[U,V] = gradient(Z,0.2,0.2);
hold on
quiver(X,Y,U,V)
hold off

 Combine Contour Plot and Quiver Plot

4-7

See Also
contour | hold

4 Contour Plots

4-8

Contour Plot with Major and Minor Grid Lines

You can create a contour plot with emphasis on selected contour lines by splitting the data and
creating two overlapping contour plots.

For example, create a contour plot of the peaks function where the even numbered contours lines
are solid and the odd numbered contour lines are dotted. Plot one contour for the even numbered
levels. Then, overlay a second contour plot with the odd numbered levels drawn with a dotted line.

major = -6:2:8;
minor = -5:2:7;
[cmajor,hmajor] = contour(peaks,'LevelList',major);
clabel(cmajor,hmajor)

hold on
[cminor,hminor] = contour(peaks,'LevelList',minor);
hminor.LineStyle = ':';
hold off

See Also
contour | contourf | clabel | hold

 Contour Plot with Major and Minor Grid Lines

4-9

Specialized Charts

• “Create Heatmap from Tabular Data” on page 5-2
• “Create Word Cloud from String Arrays” on page 5-11
• “Explore Table Data Using Parallel Coordinates Plot” on page 5-14

5

Create Heatmap from Tabular Data

Heatmaps are a way to visualize data using color. This example shows how to import a file into
MATLAB® as a table and create a heatmap from the table columns. It also shows how to modify the
appearance of the heatmap, such as setting the title and axis labels.

Import File as Table

Load the sample file TemperatureData.csv, which contains average daily temperatures from
January 2015 through July 2016. Read the file into a table and display the first five rows.

tbl = readtable('TemperatureData.csv');
head(tbl,5)

 Year Month Day TemperatureF
 ____ ___________ ___ ____________

 2015 {'January'} 1 23
 2015 {'January'} 2 31
 2015 {'January'} 3 25
 2015 {'January'} 4 39
 2015 {'January'} 5 29

Create Basic Heatmap

Create a heatmap that shows the months along the x-axis and years along the y-axis. Color the
heatmap cells using the temperature data by setting the ColorVariable property. Assign the
HeatmapChart object to the variable h. Use h to modify the chart after it is created.

h = heatmap(tbl,'Month','Year','ColorVariable','TemperatureF');

5 Specialized Charts

5-2

By default, MATLAB calculates the color data as the average temperature for each month. However,
you can change the calculation method by setting the ColorMethod property.

Reorder Values Along Axis

The values along an axis appear in alphabetical order. Reorder the months so that they appear in
chronological order. You can customize the labels using categorical arrays or by setting
HeatmapChart properties.

To use categorical arrays, first change the data in the Month column of the table from a cell array to a
categorical array. Then use the reordercats function to reorder the categories. You can apply these
functions to the table in the workspace (tbl) or to the table stored in the SourceTable property of
the HeatmapChart object (h.SourceTable). Applying them to the table stored in the
HeatmapChart object avoids affecting the original data.

h.SourceTable.Month = categorical(h.SourceTable.Month);
neworder = {'January','February','March','April','May','June','July',...
 'August','September','October','November','December'};
h.SourceTable.Month = reordercats(h.SourceTable.Month,neworder);

 Create Heatmap from Tabular Data

5-3

Similarly, you can add, remove, or rename the heatmap labels using the addcats, removecats, or
renamecats functions for categorical arrays.

Alternatively, you can reorder the values along an axis using the XDisplayData and YDisplayData
properties of the HeatmapChart object.

h.XDisplayData = {'January','February','March','April','May','June', ...
 'July','August','September','October','November','December'};

5 Specialized Charts

5-4

Modify Title and Axis Labels

When you create a heatmap using tabular data, the heatmap automatically generates a title and axis
labels. Customize the title and axis labels by setting the Title, XLabel, and YLabel properties of
the HeatmapChart object. For example, change the title and remove the x-axis label. Also, change
the font size.

h.Title = 'Average Temperatures';
h.XLabel = '';
h.FontSize = 12;

 Create Heatmap from Tabular Data

5-5

Modify Appearance of Missing Data Cells

Since there is no data for August 2016 through December 2016, those cells appear as missing data.
Modify the appearance of the missing data cells using the MissingDataColor and
MissingDataLabel properties.

h.MissingDataColor = [0.8 0.8 0.8];
h.MissingDataLabel = 'No Data';

5 Specialized Charts

5-6

Remove Colorbar

Remove the colorbar by setting the ColorbarVisible property.

h.ColorbarVisible = 'off';

 Create Heatmap from Tabular Data

5-7

Format Cell Text

Customize the format of the text that appears in each cell by setting the CellLabelFormat property.
For example, display the text with no decimal values.

h.CellLabelFormat = '%.0f';

5 Specialized Charts

5-8

Add or Remove Values Along Axis

Show only the first month of each quarter by setting the XDisplayData property. Add the year 2017
along the y-axis by setting the YDisplayData property. Set these properties to a subset, superset, or
permutation of the values in XData or YData, respectively.

h.XDisplayData = {'January','April','July','October'};
h.YDisplayData = {'2015','2016','2017'};

 Create Heatmap from Tabular Data

5-9

Since there is no data associated with the year 2017, the heatmap cells use the missing data color.

See Also
Functions
heatmap | table | readtable | addcats | removecats | renamecats | reordercats |
categorical

Properties
HeatmapChart

5 Specialized Charts

5-10

Create Word Cloud from String Arrays

This example shows how to create a word cloud from plain text by reading it into a string array,
preprocessing it, and passing it to the wordcloud function. If you have Text Analytics Toolbox™
installed, then you can create word clouds directly from string arrays. For more information, see
wordcloud (Text Analytics Toolbox) (Text Analytics Toolbox).

Read the text from Shakespeare's Sonnets with the fileread function.

sonnets = fileread('sonnets.txt');
sonnets(1:135)

ans =
 'THE SONNETS

 by William Shakespeare

 I

 From fairest creatures we desire increase,
 That thereby beauty's rose might never die,'

Convert the text to a string using the string function. Then, split it on newline characters using the
splitlines function.

sonnets = string(sonnets);
sonnets = splitlines(sonnets);
sonnets(10:14)

ans = 5x1 string
 " From fairest creatures we desire increase,"
 " That thereby beauty's rose might never die,"
 " But as the riper should by time decease,"
 " His tender heir might bear his memory:"
 " But thou, contracted to thine own bright eyes,"

Replace some punctuation characters with spaces.

p = ["." "?" "!" "," ";" ":"];
sonnets = replace(sonnets,p," ");
sonnets(10:14)

ans = 5x1 string
 " From fairest creatures we desire increase "
 " That thereby beauty's rose might never die "
 " But as the riper should by time decease "
 " His tender heir might bear his memory "
 " But thou contracted to thine own bright eyes "

Split sonnets into a string array whose elements contain individual words. To do this, join all the
string elements into a 1-by-1 string and then split on the space characters.

 Create Word Cloud from String Arrays

5-11

sonnets = join(sonnets);
sonnets = split(sonnets);
sonnets(7:12)

ans = 6x1 string
 "From"
 "fairest"
 "creatures"
 "we"
 "desire"
 "increase"

Remove words with fewer than five characters.

sonnets(strlength(sonnets)<5) = [];

Convert sonnets to a categorical array and then plot using wordcloud. The function plots the
unique elements of C with sizes corresponding to their frequency counts.

C = categorical(sonnets);
figure
wordcloud(C);
title("Sonnets Word Cloud")

5 Specialized Charts

5-12

See Also
wordcloud | WordCloudChart Properties

 Create Word Cloud from String Arrays

5-13

Explore Table Data Using Parallel Coordinates Plot

This example shows how to import a file into MATLAB® as a table, create a parallel coordinates plot
from the tabular data, and modify the appearance of the plot.

Parallel coordinates plots are useful for visualizing tabular or matrix data with multiple columns. The
rows of the input data correspond to lines in the plot, and the columns of the input data correspond to
coordinates in the plot. You can group the lines in the plot to better see trends in your data.

Import File as Table

Load the sample file TemperatureData.csv, which contains average daily temperatures from
January 2015 through July 2016. Read the file into a table, and display the first few rows.

tbl = readtable('TemperatureData.csv');
head(tbl)

 Year Month Day TemperatureF
 ____ ___________ ___ ____________

 2015 {'January'} 1 23
 2015 {'January'} 2 31
 2015 {'January'} 3 25
 2015 {'January'} 4 39
 2015 {'January'} 5 29
 2015 {'January'} 6 12
 2015 {'January'} 7 10
 2015 {'January'} 8 4

Create Basic Parallel Coordinates Plot

Create a parallel coordinates plot from the first few rows of the table. Each line in the plot
corresponds to a single row in the table. By default, parallelplot displays all the coordinate
variables in the table, in the same order as they appear in the table. The software displays the
coordinate variable names below their corresponding coordinate rulers.

The plot shows that the first eight rows of the table provide temperature data for the first eight days
in January 2015. For example, the eighth day was the coldest of the eight days, on average.

parallelplot(head(tbl))

5 Specialized Charts

5-14

To help you interpret the plot, MATLAB randomly jitters plot lines by default so that they are unlikely
to overlap perfectly along coordinate rulers. For example, although the first eight observations have
the same Year and Month values, the plot lines are not flush with the 2015 tick mark along the Year
coordinate ruler or the January tick mark along the Month coordinate ruler. Although jittering
affects all coordinate variables, it is often more noticeable along categorical coordinate rulers
because it depends on the distance between tick marks. You can control the amount of jittering in the
plot by setting the Jitter property.

Notice that some of the tick marks along the Year coordinate ruler are meaningless decimal values.
To ensure that tick marks along a coordinate ruler correspond only to meaningful values, convert the
variable to a categorical variable by using the categorical function.

tbl.Year = categorical(tbl.Year);

Now create a parallel coordinates plot from the entire table. Assign the
ParallelCoordinatesPlot object to the variable p, and use p to modify the plot after you create
it. For example, add a title to the plot using the Title property.

p = parallelplot(tbl)

p =
 ParallelCoordinatesPlot with properties:

 SourceTable: [565x4 table]
 CoordinateVariables: {'Year' 'Month' 'Day' 'TemperatureF'}
 GroupVariable: ''

 Explore Table Data Using Parallel Coordinates Plot

5-15

 Show all properties

p.Title = 'Temperature Data';

Group Plot Lines

Group the lines in the plot according to the Year values by setting the GroupVariable property. By
default, MATLAB adds a legend to the plot. You can remove the legend by setting the
LegendVisible property to 'off'.

p.GroupVariable = 'Year';

5 Specialized Charts

5-16

Rearrange Coordinate Variables Interactively

Rearrange coordinate variables interactively to compare them more easily and decide which variables
to keep in your plot.

Open your plot in a figure window. Click a coordinate tick label and drag the associated coordinate
ruler to the location of your choice. The software outlines the selected coordinate ruler in a black
rectangle. For example, you can click the Month coordinate tick label and drag the coordinate ruler
to the right. You can then easily compare Month and TemperatureF values.

 Explore Table Data Using Parallel Coordinates Plot

5-17

When you rearrange coordinate variables interactively, the software updates the associated
CoordinateTickLabels, CoordinateVariables, and CoordinateData properties of the plot.

For more interactivity options, see “Tips”.

Select Subset of Coordinate Variables

Display a subset of the coordinate variables in p.SourceTable and specify their order in the plot by
setting the CoordinateVariables property of p.

In particular, remove the Day variable from the plot, and display the TemperatureF variable, which
is in the fourth column of the source table, as the second coordinate in the plot.

p.CoordinateVariables = [1 4 2];

5 Specialized Charts

5-18

Alternatively, you can set the CoordinateVariables property by using a string or cell array of
variable names or a logical vector with true elements for the selected variables.

Modify Categories in Coordinate Variable

Display a subset of the categories in Month and change the category order along the coordinate ruler
in the plot.

Because some months have data for only one of the two years, remove the rows in the source table
corresponding to those unique months. MATLAB updates the plot as soon as you change the source
table.

uniqueMonth = {'September','October','November','December','August'};
uniqueMonthIdx = ismember(p.SourceTable.Month,uniqueMonth);
p.SourceTable(uniqueMonthIdx,:) = [];

 Explore Table Data Using Parallel Coordinates Plot

5-19

Arrange the months in chronological order along the Month coordinate ruler by updating the source
table.

categoricalMonth = categorical(p.SourceTable.Month);
newOrder = {'January','February','March','April','May','June','July'};
orderMonth = reordercats(categoricalMonth,newOrder);
p.SourceTable.Month = orderMonth;

5 Specialized Charts

5-20

Group Plot Lines Using Binned Values

To better visualize the range of temperatures during each month, bin the temperature data by using
discretize and group the lines in the plot using the binned values. Check the minimum and
maximum temperatures in the source table. Set the bin edges such that they include these values.

min(p.SourceTable.TemperatureF)

ans = -3

max(p.SourceTable.TemperatureF)

ans = 80

binEdges = [-3 10:10:80];
bins = {'00s+/-','10s','20s','30s','40s','50s','60s','70s+'};
groupTemperature = discretize(p.SourceTable.TemperatureF, ...
 binEdges,'categorical',bins);

Add the binned temperatures to the source table. Group the lines in the plot according to the binned
temperature data.

p.SourceTable.GroupTemperature = groupTemperature;
p.GroupVariable = 'GroupTemperature';

 Explore Table Data Using Parallel Coordinates Plot

5-21

Because GroupTemperature includes more than seven categories, some of the groups have the
same color in the plot. Assign distinct colors to every group by setting the Color property.

p.Color = jet(8);

5 Specialized Charts

5-22

See Also
Functions
parallelplot | table | readtable | reordercats | categorical | discretize

Properties
ParallelCoordinatesPlot

 Explore Table Data Using Parallel Coordinates Plot

5-23

Geographic Axes and Charts

• “Create Maps Using Latitude and Longitude Data” on page 6-2
• “Pan and Zoom Behavior in Geographic Axes and Charts” on page 6-6
• “Geographic Bubble Charts Overview” on page 6-8
• “Geographic Bubble Chart Legends” on page 6-10
• “View Cyclone Track Data in Geographic Density Plot” on page 6-12
• “View Density of Cellular Tower Placement” on page 6-17
• “Customize Layout of Geographic Axes” on page 6-23
• “Deploy Geographic Axes and Charts” on page 6-25
• “Use Geographic Bubble Chart Properties” on page 6-26
• “Specify Map Limits with Geographic Axes” on page 6-30
• “Access Basemaps for Geographic Axes and Charts” on page 6-34
• “Create Geographic Bubble Chart from Tabular Data” on page 6-40

6

Create Maps Using Latitude and Longitude Data

If you have data that is associated with specific geographic locations, use a geographic axes or chart
to visualize your data on a map and provide visual context. For example, if you have data that
describes the occurrences of tsunamis around the world, plot the data in a geographic axes where a
marker indicates the location of each occurrence on a map. These examples show how to create line
plots, scatter plots, bubble charts, and density plots in geographic coordinates.

Create Geographic Line Plot

Draw a line on a map between Seattle and Anchorage. Specify the latitude and longitude for each
city, then plot the data using the geoplot function. Customize the appearance of the line using the
line specification '-*'. Adjust the latitude and longitude limits of the map using geolimits. Change
the basemap using the geobasemap function.

latSeattle = 47.62;
lonSeattle = -122.33;
latAnchorage = 61.20;
lonAnchorage = -149.9;

geoplot([latSeattle latAnchorage],[lonSeattle lonAnchorage],'-*')
geolimits([45 62],[-149 -123])
geobasemap streets

6 Geographic Axes and Charts

6-2

Create Geographic Scatter Plot

Create latitude and longitude positions and define values at each point. Plot the values on a map
using the geoscatter function. The example specifies the triangle as the marker, with size and color
representing variations in the values.

lon = (-170:10:170);
lat = 50 * cosd(3*lon);
A = 101 + 100*(sind(2*lon));
C = cosd(4*lon);

geoscatter(lat,lon,A,C,'^')

Create Geographic Bubble Chart

Create a table from tsunami data. Define one value as a categorical value. Plot the data on a map
using the geobubble function. The example uses the size of the bubble to indicate the height of the
tsunami wave and color to indicate the cause of the tsunami.

tsunamis = readtable('tsunamis.xlsx');
tsunamis.Cause = categorical(tsunamis.Cause);
figure
gb = geobubble(tsunamis,'Latitude','Longitude', ...
 'SizeVariable','MaxHeight','ColorVariable','Cause');
geolimits([10 65],[-180 -80])
title 'Tsunamis in North America';
gb.SizeLegendTitle = 'Maximum Height';
geobasemap colorterrain

 Create Maps Using Latitude and Longitude Data

6-3

Create Geographic Density Plot

Create a table from tsunami data. Plot the data using the geodensityplot function.

tsunamis = readtable('tsunamis.xlsx');
lat = tsunamis.Latitude;
lon = tsunamis.Longitude;
weights = tsunamis.MaxHeight;

geodensityplot(lat,lon,weights)
geolimits([41.2 61.4],[-148.6 -107.0])
geobasemap topographic

6 Geographic Axes and Charts

6-4

See Also
Functions
geoaxes | geoscatter | geoplot | geodensityplot | geobubble

Properties
GeographicBubbleChart Properties

Related Examples
• “Use Geographic Bubble Chart Properties” on page 6-26
• “Access Basemaps for Geographic Axes and Charts” on page 6-34
• “Create Geographic Bubble Chart from Tabular Data” on page 6-40

 Create Maps Using Latitude and Longitude Data

6-5

Pan and Zoom Behavior in Geographic Axes and Charts
The basemap in a geographic axes or chart is live, that is, you can pan the basemap, to view other
geographic locations, or zoom in and out on the map to view regions in more detail. The map updates
as you pan and zoom. On geographic axes and charts, pan and zoom capabilities are enabled by
default.

To pan the basemap in a geographic axes or chart, use the arrow keys or move the cursor over the
map and click and drag the basemap. You can pan the map in the horizontal direction continuously—
longitude wraps. Panning in the vertical direction stops just beyond 85 degrees, north and south.

To zoom in and out on the map in a geographic axes or chart, you can use the scroll wheel, trackpad,
or the Plus and Minus keys on the keyboard.

You can also zoom in, zoom out, or restore the original view of the map by using the axes toolbar.
When you move the cursor over the map, the axes toolbar appears. When you move the cursor away
from the map, the axes toolbar disappears.

See Also
geoaxes | geoscatter | geoplot | geodensityplot | geobubble

Related Examples
• “Use Geographic Bubble Chart Properties” on page 6-26

6 Geographic Axes and Charts

6-6

• “Access Basemaps for Geographic Axes and Charts” on page 6-34
• “Create Geographic Bubble Chart from Tabular Data” on page 6-40

 Pan and Zoom Behavior in Geographic Axes and Charts

6-7

Geographic Bubble Charts Overview
Using a map as a background, the geographic bubble chart plots your data as filled, colored circles,
called bubbles, at locations on the map specified by longitude and latitude. You can use the size and
color of the bubbles to indicate data values at these locations.

Suppose that you have data that describes the occurrences of tsunamis around the world. Plot the
data in a geographic bubble chart where the bubbles mark each occurrence on a map, called a
basemap. You can use bubble size to indicate the height of the wave and bubble color to indicate the
cause. With the map as background, you can immediately see tsunami occurrences and their severity.
Plotting the data on a map is an effective way to visualize your data.

A geographic bubble chart includes these components (shown in the following figure):

Geographic Bubble Chart Components

Component Description
Basemap The map over which the geographic bubble chart plots the data. For more

information, see “Access Basemaps for Geographic Axes and Charts” on
page 6-34.

Bubbles Symbols that mark map locations and communicate other information
through their size and color.

Data Tips Small windows that pop open containing information about the bubble,
such as latitude and longitude.

Decorations Descriptive visual elements of the chart, such as latitude and longitude
grids, and a scale bar, which shows how distances are represented on the
map. The chart updates these elements as you zoom in and out on the
map. Use geographic bubble chart properties to control the visibility of
these elements, such as the ScalebarVisible property.

Legends Displays of tabular information that explain the meaning of bubble size
and bubble color. For more information, see “Geographic Bubble Chart
Legends” on page 6-10.

Title Text displays at the top of the chart, similar to any MATLAB figure. You
can specify this using the geographic bubble chart Title property or the
title command.

Axes Toolbar Set of controls that let you zoom in or out on the map, or return to the
original view of the map. For more information, see “Pan and Zoom
Behavior in Geographic Axes and Charts” on page 6-6.

6 Geographic Axes and Charts

6-8

See Also
geobubble | GeographicBubbleChart Properties

Related Examples
• “Use Geographic Bubble Chart Properties” on page 6-26
• “Access Basemaps for Geographic Axes and Charts” on page 6-34
• “Create Geographic Bubble Chart from Tabular Data” on page 6-40

 Geographic Bubble Charts Overview

6-9

Geographic Bubble Chart Legends
When you create a geographic bubble chart with SizeData, the chart includes a size legend that
explains how the bubble sizes represent the data. The legend includes a sampling of four bubble
sizes, smallest to largest. You can specify the widths of the smallest and largest bubbles using the
BubbleWidthRange property. The legend labels the smallest and largest bubbles in the legend with
their associated numeric values. The legend gets these values from the SizeLimits property. If you
are specifying SizeData directly, the legend has no title. You can specify a title for the legend using
the SizeLegendTitle property. If you are specifying a table variable for size data, the legend uses
the variable name as the size legend title. The legend includes a sampling of four bubble sizes,
smallest to largest. The widths of the smallest and largest bubbles can be specified using the
BubbleWidthRange property. The legend labels the smallest and largest bubbles in the legend with
their associated numeric values.

Similarly, if you create a geographic bubble chart with ColorData, the chart includes a color legend
that shows how bubble colors map to your categorical data. The legend includes all the colors,
labeled with their associated category. If you are specifying ColorData directly, the legend has no
title. You can specify a title for the legend using the ColorLegendTitle property. If you are
specifying a table variable for color data, the legend uses the variable name as the color legend title.

The following illustration shows the geographic bubble chart size and color legends.

See Also
geobubble | GeographicBubbleChart Properties

6 Geographic Axes and Charts

6-10

Related Examples
• “Use Geographic Bubble Chart Properties” on page 6-26
• “Access Basemaps for Geographic Axes and Charts” on page 6-34
• “Create Geographic Bubble Chart from Tabular Data” on page 6-40

 Geographic Bubble Chart Legends

6-11

View Cyclone Track Data in Geographic Density Plot

This example shows how to view cyclone tracking data in a geographic density plot. The data records
observations of cyclones over an 11 year period, between 2007-2017.

Load the cyclone track data. The data, produced by the Japan Meteorological Agency, records the
location, pressure (in hPa), and wind speed (knots) of cyclones at six-hour intervals. Each row in the
table represents the record of an observation of a particular cyclone, identified by a name and an ID
number.

load cycloneTracks

To understand the data, plot the tracks of three cyclones, using the geoplot function. Get the data
records for three cyclones, identified by ID number and name. Each observation record provides the
latitude and longitude. Plot all the three cyclone tracks on one map by turning hold on.

figure
latMalakas = cycloneTracks.Latitude(cycloneTracks.ID == 1012);
lonMalakas = cycloneTracks.Longitude(cycloneTracks.ID == 1012);
geoplot(latMalakas,lonMalakas,'.-')
geolimits([0 60],[100 180])
hold on
latMegi = cycloneTracks.Latitude(cycloneTracks.ID == 1013);
lonMegi = cycloneTracks.Longitude(cycloneTracks.ID == 1013);
geoplot(latMegi,lonMegi,'.-')
latChaba = cycloneTracks.Latitude(cycloneTracks.ID == 1014);
lonChaba = cycloneTracks.Longitude(cycloneTracks.ID == 1014);
geoplot(latChaba,lonChaba,'.-')

6 Geographic Axes and Charts

6-12

View the density of all cyclones tracked over this 11-year period using geodensityplot. In this plot,
instead of a seeing the track of a particular cyclone, view all the records at every point for all the
cyclones. geodensityplot calculates a cumulative probability distribution surface using
contributions from the individual locations. The surface transparency varies with density.

figure
latAll = cycloneTracks.Latitude;
lonAll = cycloneTracks.Longitude;
geodensityplot(latAll,lonAll)

 View Cyclone Track Data in Geographic Density Plot

6-13

By default, geodensityplot uses a single color to represent all density values, using transparency
to represent density variation. You can also use multiple colors with geodensityplot to represent
areas of varying density. To do this, set the 'FaceColor' property.

geodensityplot(latAll,lonAll,'FaceColor','interp')

6 Geographic Axes and Charts

6-14

A density plot can apply weights to individual data points. The weights multiply the contribution of
individual points to the density surface.

windspeedAll = cycloneTracks.WindSpeed;
geodensityplot(latAll,lonAll,windspeedAll,'FaceColor','interp')

 View Cyclone Track Data in Geographic Density Plot

6-15

Reference: This cyclone track data was modified for use in this example by MathWorks from the
RSMC Best Track Data by the Japan Meteorological Agency (https://www.jma.go.jp/jma/jma-eng/jma-
center/rsmc-hp-pub-eg/RSMC_HP.htm).

See Also
geodensityplot | DensityPlot Properties

Related Examples
• “Access Basemaps for Geographic Axes and Charts” on page 6-34

6 Geographic Axes and Charts

6-16

https://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/RSMC_HP.htm
https://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/RSMC_HP.htm

View Density of Cellular Tower Placement

This example shows how to use a geographic density plot to view the density of cellular tower
placement in California.

Load Cellular Tower Placement Data

Load a table of cellular tower placement data into the workspace. The table includes fields that
identify the location of the cellular tower by latitude and longitude, and identify the type of tower.

load cellularTowers

View the Data as a Geographic Scatter Plot

Plot the cellular tower data using the geoscatter function. In the plot, there are clear areas around
San Francisco where the number of towers are too dense to be represented using a scatter plot.

lat = cellularTowers.Latitude;
lon = cellularTowers.Longitude;
geoscatter(lat,lon,'.')
text(gca,37.75,-122.75,'San Francisco','HorizontalAlignment','right')

View the Data as a Geographic Density Plot

The dense area of towers in the San Francisco area can be shown using geodensityplot.

 View Density of Cellular Tower Placement

6-17

geodensityplot(lat,lon)
text(gca,37.75,-122.75,'San Francisco','HorizontalAlignment','right')

Create a Density Plot Specifying the Radius

When you create a geographic density plot, by default, the density plot automatically selects a radius
value, using the latitude and longitude data. Use the Radius property to manually select a radius in
meters.

radiusInMeters = 50e3; % 50 km
geodensityplot(lat,lon,'Radius',radiusInMeters)

6 Geographic Axes and Charts

6-18

Use axes properties to adjust transparency

When set to 'interp', the density plot's FaceAlpha and FaceColor properties use the Alphamap
and Colormap properties of the underlying geographic axes, respectively. Changing the Alphamap
changes the mapping of the density values to color intensities.

geodensityplot(lat,lon)
alphamap(normalize((1:64).^0.5,'range'))

 View Density of Cellular Tower Placement

6-19

The AlphaScale property on the geographic axes can also be used to alter the transparency. This
property is particularly useful when trying to show where any density is found, rather than
highlighting the most dense areas.

figure
dp = geodensityplot(lat,lon)

dp = DensityPlot with properties:
 FaceColor: [0 0.4470 0.7410]
 FaceAlpha: 'interp'
 LatitudeData: [1×1193 double]
 LongitudeData: [1×1193 double]
 WeightData: [1×0 double]
 Radius: 1.8291e+04

 Show all properties

gx = gca

gx = GeographicAxes with properties:
 Basemap: 'streets-light'
 Position: [0.1300 0.1100 0.7750 0.8150]
 Units: 'normalized'

 Show all properties

gx.AlphaScale = 'log';

6 Geographic Axes and Charts

6-20

Use DensityPlot Object Properties to Specify Color

Add color.

dp.FaceColor = 'interp';
colormap hot

 View Density of Cellular Tower Placement

6-21

See Also
geodensityplot | DensityPlot Properties

Related Examples
• “Access Basemaps for Geographic Axes and Charts” on page 6-34

6 Geographic Axes and Charts

6-22

Customize Layout of Geographic Axes

Customize the layout of a geographic axes by modifying its properties.

Plot a straight line between two points on a map. Specify the endpoints of the line using the
coordinates of Seattle and Anchorage. Specify latitude and longitude in degrees.

latSeattle = 47.62;
lonSeattle = -122.33;
latAnchorage = 61.20;
lonAnchorage = -149.9;

Plot the data using geoplot. Customize the appearance of the line using the line specification 'b:'.
Adjust the latitude and longitude limits of the map using geolimits.

geoplot([latSeattle latAnchorage],[lonSeattle lonAnchorage],'b:')
geolimits([45 62],[-149 -123])

Customize the layout of the axes. Turn off the grid, stretch the grid to take up the entire figure, and
turn off tick marks by modifying the Grid, Position, and TickDir properties.

gx = gca;
gx.Grid = 'off';
gx.TickDir = 'out';
gx.Position = gx.OuterPosition;

 Customize Layout of Geographic Axes

6-23

See Also
geoplot

Related Examples
• “Access Basemaps for Geographic Axes and Charts” on page 6-34

6 Geographic Axes and Charts

6-24

Deploy Geographic Axes and Charts
You can use MATLAB Compiler™ to deploy MATLAB applications that use geographic axes or charts.
Depending on which basemaps you use, map interactions in your deployed application are the same
as in a MATLAB session; that is, the map is "live" and can be panned and zoomed.

App Usage Behavior
The deployed application uses only the
'darkwater' basemap.

The 'darkwater' basemap is included with MATLAB
and does not require internet access.

The deployed application offers a choice of
basemaps.

The application accesses basemaps over the internet.

The deployed application offers a choice of
basemaps and does not require an
internet connection.

You must download the MATLAB Basemap Data add-ons
and include them in the deployed application package.
For more information about downloading basemaps, see
“Access Basemaps for Geographic Axes and Charts” on
page 6-34.

Note By default, the deployment tool pre-selects all of your downloaded MATLAB Basemap Data add-
ons for inclusion in the deployed application package. Do not leave them all selected. Choose only the
basemaps that you want users of your application to see. Including all the MATLAB Basemap Data
add-ons in your deployed application package can create a file that exceeds file system limits.

See Also
geoaxes | geoscatter | geoplot | geodensityplot | geobubble

Related Examples
• “Access Basemaps for Geographic Axes and Charts” on page 6-34

 Deploy Geographic Axes and Charts

6-25

Use Geographic Bubble Chart Properties
In this section...
“Control Bubble Size” on page 6-26
“Control Bubble Color” on page 6-28

This topic describes some common tasks you can perform using geographic bubble charts properties.

Control Bubble Size
You can use the size of the bubbles in a geographic bubble chart to communicate a quantifiable
aspect of your data. For example, for Lyme disease sample data, you can use bubble size to visualize
the number of cases in each county in New England. The following properties of the geographic
bubble chart work together to control the size of the bubbles on the chart:

• SizeData
• SizeVariable
• SizeLimits
• BubbleWidthRange

The SizeData property specifies the data that you want to plot on the chart. SizeData must be a
vector of numeric data the same size as the latitude and longitude vectors, or a scalar. Another way to
specify size data is to pass a table as the first argument to geobubble and specify the name of a
table variable to use for size data. You use the SizeVariable property to specify this table variable.
When you use a table variable to specify size data, geobubble stores the values of this variable in
the SizeData property and sets the property to read-only. If you do not specify SizeData,
geobubble plots the geographic locations on a map using bubbles that are all the same size.

geobubble determines the size (diameter) of each bubble by linearly scaling the SizeData values
between the limits set by the BubbleWidthRange property. BubbleWidthRange is a two-element
vector that specifies the smallest bubble diameter and the largest bubble diameter in points. By
default, BubbleWidthRange sets the range of bubble diameters between 5 points and 20 points. You
can specify a bubble diameter as small as 1 point and as large as 100 points.

Use the SizeLimits property to control the mapping between SizeData and BubbleWidthRange.
By default, the SizeLimits property specifies the extremes of your data range. For example, the
SizeLimits default for the Lyme disease sample data is: [0 514] when the Cases2010 variable is
used as the SizeVariable.

When you specify size data, the geographic bubble chart includes a legend that describes the
mapping of bubble sizes to your data. geobubble uses the values in the SizeLimits property as
upper and lower bounds of the legend. When you specify a table variable, geobubble uses the
variable name as the title of the size legend.

Make Bubbles Smaller in Geographic Bubble Charts

This example shows how to reduce the size of the bubbles in a geographic bubble chart using the
BubbleWidthRange property. (You can also reduce overlapping by resizing the geographic bubble
chart figure.)

6 Geographic Axes and Charts

6-26

Read Lyme disease sample data into the workspace.

counties = readtable('counties.xlsx');

Create a geographic bubble chart using the latitude, longitude, and occurrence data from the table.
Adjust the limits of the chart using the geolimits function.

gb = geobubble(counties,'Latitude','Longitude','SizeVariable','Cases2010');
geolimits(gb,[41 47],[-75 -66])

View the values of the SizeData and SizeLimits properties of the geographic bubble chart.

size_data_values = gb.SizeData;
size_data_values(1:15)

ans = 15×1

 331
 187
 88
 125
 240
 340
 161
 148
 38
 4

 Use Geographic Bubble Chart Properties

6-27

 ⋮

size_limits = gb.SizeLimits

size_limits = 1×2

 0 514

Make the bubbles smaller to avoid overlapping using the BubbleWidthRange property. First view
the initial setting of the property.

default_width_range = gb.BubbleWidthRange

default_width_range = 1×2

 5 20

gb.BubbleWidthRange = [4 15];

Control Bubble Color
You can use the color of the bubbles in a geographic bubble chart to code them according to data
category. For example, in the Lyme disease sample data, you can characterize the severity of Lyme

6 Geographic Axes and Charts

6-28

disease in each county in New England as high, medium, or low. The following properties of the
geographic bubble chart work together to control the color of the bubbles on the chart:

• ColorData
• ColorVariable
• BubbleColorList

The ColorData property specifies the data that you want to control the color of the bubbles in your
chart. ColorData must be a vector of categorical data, the same size as latitude and longitude.
Another way to specify color data is to pass a table as the first argument to geobubble and specify
the name of a table variable to use for color data. You use the ColorVariable property to specify
this table variable. geobubble stores the values of the table variable in the ColorData property and
sets the property to read-only.

If your data does not initially include a categorical variable, you can create one. For example, the
Lyme disease sample data does not include a categorical variable. One way to create a variable of this
type is to use the discretize function. Take the occurrences data, cases2010, and create three
categories based on the number of occurrences, describing them as low, medium, or high. The
following code creates a categorical variable named Severity from the occurrence data.

Severity = discretize(counties.Cases2010,[0 50 100 550],...
'categorical', {'Low', 'Medium', 'High'});

The BubbleColorList property controls the colors used for the bubbles in a geographic bubble
chart. The value is an m-by-3 array where each row is an RGB color triplet. By default, geobubble
uses a set of seven colors. If you have more than seven categories, the colors repeat cyclically. To
change the colors used, use one of the other MATLAB colormap functions, such as parula or jet, or
specify a custom list of colors.

See Also
discretize | geolimits | geobubble | GeographicBubbleChart Properties

Related Examples
• “Deploy Geographic Axes and Charts” on page 6-25
• “Access Basemaps for Geographic Axes and Charts” on page 6-34
• “Geographic Bubble Charts Overview” on page 6-8
• “Create Geographic Bubble Chart from Tabular Data” on page 6-40

 Use Geographic Bubble Chart Properties

6-29

Specify Map Limits with Geographic Axes
A geographic axes or chart sets the latitude and longitude limits of the basemap to encompass all the
points in your data. These map limits do not change when you resize the chart by resizing the figure
window except to adapt to changes in the axes or chart aspect. The map limits do change when you
zoom in or out or pan. The geographic axes and charts support properties related to map limits. Some
are read-only properties that are for informational use.

• LatitudeLimits - Returns the current latitude limits (read-only).
• LongitudeLimits - Returns the current longitude limits (read-only).
• MapCenter - Return or set the current map center point.
• ZoomLevel - Return or set the current map zoom level.

A convenient way to get the current latitude and longitude limits is to call the geolimits function.
You can also use the geolimits function to set the latitude and longitude limits. Use the geolimits
function when you want to create a geographic axes or chart with the same map limits as an existing
axes or chart. Retrieve the limits of the existing axes or chart and use geolimits to set the limits of
the new axes or chart.

Note You can specify latitudes outside the approximate limits [-85 85], beyond which the basemap
tiles do not extend. However these values typically are not visible unless you control the map extent
using the MapCenter and ZoomLevel properties. Also, data points very close to 90 degrees and -90
degrees can never be seen, because they map to infinite or near-infinite values in the vertical
direction.

Display Several Geographic Bubble Charts Centered Within Specified
Limits

This example shows how to create two geographic bubble charts with the same map limits.

Read Lyme Disease sample data into the workspace.

counties = readtable('counties.xlsx');

Create a geographic bubble chart that plots the occurrences of Lyme disease in New England
counties.

gb = geobubble(counties,'Latitude','Longitude','SizeVariable','Cases2010');

6 Geographic Axes and Charts

6-30

Pan and zoom the map until you see only the states in northern New England: Vermont, New
Hampshire, and Maine.

 Specify Map Limits with Geographic Axes

6-31

Get the new limits of the map using the command [nlat nlon] = geolimits(gb). Get the new
zoom level as well using the command nzoom = gb.ZoomLevel. Store the latitude, longitude, and
zoom level of the new map limits.

nlat = [42.5577 46.6921];
nlon = [-73.5500 -66.8900];
nzoom = 6.3747;

Create another map with Lyme disease occurrence data for 2011 and set the map limits and zoom
level to match the first chart.

figure
gb2 = geobubble(counties,'Latitude','Longitude','SizeVariable','Cases2011');
[n2lat n2lon] = geolimits(gb2,nlat,nlon);
gb2.ZoomLevel = nzoom;

6 Geographic Axes and Charts

6-32

See Also
geolimits | GeographicAxes Properties | GeographicBubbleChart Properties | DensityPlot
Properties | geoaxes | geobubble | geodensityplot | geoplot | geoscatter

Related Examples
• “Geographic Bubble Charts Overview” on page 6-8
• “Create Geographic Bubble Chart from Tabular Data” on page 6-40

 Specify Map Limits with Geographic Axes

6-33

Access Basemaps for Geographic Axes and Charts
MathWorks® offers a selection of basemaps for use with geographic axes and charts. The basemaps
provide a variety of map options, including two-tone, color terrain, and high-zoom-level displays. Six
of the basemaps are tiled data sets created using Natural Earth. Five of the basemaps are high-zoom-
level maps hosted by Esri®. For more information about basemap options, see geobasemap.

To specify a basemap for your geographic axes or chart, you can either:

• Use the geobasemap function.
• Set the Basemap property of the GeographicAxes or GeographicBubbleChart object.

You can also add a basemap picker to the axes toolbar by using the Mapping Toolbox™ function
addToolbarMapButton.

MATLAB includes one installed basemap, a two-tone map named 'darkwater'. Use of this basemap
does not require internet access. Use of the other basemaps, including the default basemap
'streets-light', does require internet access.

If you have trouble accessing basemaps over the internet, check your proxy server settings. For more
information about specifying proxy server settings, see “Use MATLAB Web Preferences For Proxy
Server Settings”.

If you do not have reliable access to the internet, or want to improve map responsiveness, you can
plot using the 'darkwater' basemap or download a selection of basemaps onto your local system.

Display "darkwater" on Geographic Plots

To display the "darkwater" basemap while plotting with functions such as geoplot and
geoscatter, call geobasemap.

lat1 = [33.448 29.424 32.716 32.777 37.338];
lon1 = [-112.074 -98.494 -117.161 -96.797 -121.886];
geoscatter(lat1,lon1,"*")
geobasemap darkwater

6 Geographic Axes and Charts

6-34

Alternatively, you can create a set of geographic axes and specify the Basemap name-value pair.

figure
lat2 = [40.713 34.052 41.878 29.760 39.952];
lon2 = [-74.006 -118.244 -87.630 -95.370 -75.165];
geoaxes("Basemap","darkwater")
geoscatter(lat2,lon2,"*")

 Access Basemaps for Geographic Axes and Charts

6-35

You can also change the default basemap for all plots created with geoplot, geoscatter, and
geodensityplot during your MATLAB session.

set(groot,"defaultGeoaxesBasemap","darkwater")

Display "darkwater" on Geographic Bubble Charts

To display "darkwater" on a geographic bubble chart, call geobubble using the Basemap name-
value argument.

tsunamis = readtable("tsunamis.xlsx");
geobubble(tsunamis,"Latitude","Longitude","Basemap","darkwater")

6 Geographic Axes and Charts

6-36

Alternatively, you can specify the basemap by using geobasemap.

counties = readtable("counties.xlsx");
geobubble(counties,"Latitude","Longitude")
geobasemap darkwater

 Access Basemaps for Geographic Axes and Charts

6-37

Download Basemaps
Download basemaps onto your local system using the Add-On Explorer. The five high-zoom-level
basemaps provided by Esri are not available for download.

1 On the MATLAB Home tab, in the Environment section, click Add-Ons > Get Add-Ons.
2 In the Add-On Explorer, scroll to the MathWorks Optional Features section, and click show all

to find the basemap packages. You can also search for the basemap add-ons by name (listed in
the following table) or click Optional Features in Filter by Type.

3 Select the basemap data packages that you want to download.

Basemap Name Basemap Data Package Name
'bluegreen' MATLAB Basemap Data - bluegreen
'grayland' MATLAB Basemap Data - grayland
'colorterrain' MATLAB Basemap Data - colorterrain
'grayterrain' MATLAB Basemap Data - grayterrain
'landcover' MATLAB Basemap Data - landcover

6 Geographic Axes and Charts

6-38

Basemap Caching Behavior
When you access a basemap over the internet, MATLAB improves performance by temporarily
caching the basemap tiles. With this caching behavior, the program has to download each tile only
once as you pan and zoom within the map. If you lose your connection to the internet, you can still
view parts of the map that you have already viewed, because the map tiles are stored locally.

When you are not connected to the internet and you attempt to view a part of the map that you have
not previously viewed, tiles for these areas are not in your cache. For the basemaps created using
Natural Earth, the program replaces missing tiles with tiles from the 'darkwater' basemap.

For the high-zoom-level basemaps provided by Esri, the program caches a limited number of tiles and
the cached tiles expire after a limited time. If you attempt to view a region of a high-zoom-level
basemap that is not cached, you see blank map tiles. The geographic chart does not use tiles from
'darkwater' for these missing tiles.

See Also
Functions
geobubble | geoaxes | geoplot | geobasemap | geoscatter

Properties
GeographicAxes Properties | GeographicBubbleChart Properties

Related Examples
• “Geographic Bubble Charts Overview” on page 6-8
• “Use Basemaps in Offline Environments” (Mapping Toolbox)

 Access Basemaps for Geographic Axes and Charts

6-39

Create Geographic Bubble Chart from Tabular Data

Geographic bubble charts are a way to visualize data overlaid on a map. For data with geographic
characteristics, these charts can provide much-needed context. In this example, you import a file into
MATLAB® as a table and create a geographic bubble chart from the table variables (columns). Then
you work with the data in the table to visualize aspects of the data, such as population size.

Import File as Table

Load the sample file counties.xlsx, which contains records of population and Lyme disease
occurrences by county in New England. Read the data into a table using readtable.

counties = readtable('counties.xlsx');

Create Basic Geographic Bubble Chart

Create a geographic bubble chart that shows the locations of counties in New England. Specify the
table as the first argument, counties. The geographic bubble chart stores the table in its
SourceTable property. Use the 'Latitude' and 'Longitude' columns of the table to specify
locations. The chart automatically sets the latitude and longitude limits of the underlying map, called
the basemap, to include only those areas represented by the data. Assign the
GeographicBubbleChart object to the variable gb. Use gb to modify the chart after it is created.

figure
gb = geobubble(counties,'Latitude','Longitude');

6 Geographic Axes and Charts

6-40

You can pan and zoom in and out on the basemap displayed by the geobubble function.

Visualize County Populations on the Chart

Use bubble size (diameter) to indicate the relative populations of the different counties. Specify the
Population2010 variable in the table as the value of the SizeVariable parameter. In the resultant
geographic bubble chart, the bubbles have different sizes to indicate population. The chart includes a
legend that describes how diameter expresses size. Adjust the limits of the chart using geolimits.

gb = geobubble(counties,'Latitude','Longitude',...
 'SizeVariable','Population2010');
geolimits([39.50 47.17],[-74.94 -65.40])

geobubble scales the bubble diameters linearly between the values specified by the SizeLimits
property.

Visualize Lyme Disease Cases by County

Use bubble color to show the number of Lyme disease cases in a county for a given year. To display
this type of data, the geobubble function requires that the data be a categorical value. Initially,
none of the columns in the table are categorical but you can create one. For example, you can use the
discretize function to create a categorical variable from the data in the Cases2010 variable. The
new variable, named Severity, groups the data into three categories: Low, Medium, and High. Use
this new variable as the ColorVariable parameter. These changes modify the table stored in the
SourceTable property, which is a copy of the original table in the workspace, counties. Making
changes to the table stored in the GeographicBubbleChart object avoids affecting the original
data.

 Create Geographic Bubble Chart from Tabular Data

6-41

gb.SourceTable.Severity = discretize(counties.Cases2010,[0 50 100 500],...
 'categorical', {'Low', 'Medium', 'High'});
gb.ColorVariable = 'Severity';

Handle Undefined Data

When you plot the severity information, a fourth category appears in the color legend: undefined.
This category can appear when the data you cast to categorical contains empty values or values
that are out of scope for the categories you defined. Determine the cause of the undefined Severity
value by hovering your cursor over the undefined bubble. The data tip shows that the bubble
represents values in the 33rd row of the Lyme disease table.

Check the value of the variable used for Severity, Cases2010, which is the 12th variable in the 33rd
row of the Lyme disease table.

gb.SourceTable(33,12)

ans=table
 Cases2010

 514

The High category is defined as values between 100 and 500. However, the value of the Cases2010
variable is 514. To eliminate this undefined value, reset the upper limit of the High category to
include this value. For example, use 5000.

6 Geographic Axes and Charts

6-42

gb.SourceTable.Severity = discretize(counties.Cases2010,[0 50 100 5000],...
 'categorical', {'Low', 'Medium', 'High'});

Unlike the color variable, when geobubble encounters an undefined number (NaN) in the size,
latitude, or longitude variables, it ignores the value.

Choose Bubble Colors

Use a color gradient to represent the Low-Medium-High categorization. geobubble stores the colors
as an m-by-3 list of RGB values in the BubbleColorList property.

gb.BubbleColorList = autumn(3);

 Create Geographic Bubble Chart from Tabular Data

6-43

Reorder Bubble Colors

Change the color indicating high severity to be red rather than yellow. To change the color order, you
can change the ordering of either the categories or the colors listed in the BubbleColorList
property. For example, initially the categories are ordered Low-Medium-High. Use the reordercats
function to change the categories to High-Medium-Low. The categories change in the color legend.

neworder = {'High','Medium','Low'};
gb.SourceTable.Severity = reordercats(gb.SourceTable.Severity,neworder);

6 Geographic Axes and Charts

6-44

Adding Titles

When you display a geographic bubble chart with size and color variables, the chart displays a size
legend and color legend to indicate what the relative sizes and colors mean. When you specify a table
as an argument, geobubble automatically uses the table variable names as legend titles, but you can
specify other titles using properties.

title 'Lyme Disease in New England, 2010'
gb.SizeLegendTitle = 'County Population';
gb.ColorLegendTitle = 'Lyme Disease Severity';

 Create Geographic Bubble Chart from Tabular Data

6-45

Refine Chart Data

Looking at the Lyme disease data, the trend appears to be that more cases occur in more densely
populated areas. Looking at locations with the most cases per capita might be more interesting.
Calculate the cases per 1000 people and display it on the chart.

gb.SourceTable.CasesPer1000 = gb.SourceTable.Cases2010 ./ ...
 gb.SourceTable.Population2010 * 1000;
gb.SizeVariable = 'CasesPer1000';
gb.SizeLegendTitle = 'Cases Per 1000';

6 Geographic Axes and Charts

6-46

The bubble sizes now tell a different story than before. The areas with the largest populations tracked
relatively well with the different severity levels. However, when looking at the number of cases
normalized by population, it appears that the highest risk per capita has a different geographic
distribution.

See Also
geobubble | table | readtable | reordercats | categorical | discretize |
GeographicBubbleChart Properties

Related Examples
• “Use Geographic Bubble Chart Properties” on page 6-26
• “Deploy Geographic Axes and Charts” on page 6-25
• “Access Basemaps for Geographic Axes and Charts” on page 6-34
• “Geographic Bubble Charts Overview” on page 6-8

 Create Geographic Bubble Chart from Tabular Data

6-47

Animation

• “Animation Techniques” on page 7-2
• “Trace Marker Along Line” on page 7-3
• “Move Group of Objects Along Line” on page 7-5
• “Animate Graphics Object” on page 7-8
• “Line Animations” on page 7-10
• “Record Animation for Playback” on page 7-12
• “Animating a Surface” on page 7-14

7

Animation Techniques
In this section...
“Updating the Screen” on page 7-2
“Optimizing Performance” on page 7-2

You can use three basic techniques for creating animations in MATLAB:

• Update the properties of a graphics object and display the updates on the screen. This technique
is useful for creating animations when most of the graph remains the same. For example, set the
XData and YData properties repeatedly to move an object in the graph.

• Apply transforms to objects. This technique is useful when you want to operate on the position and
orientation of a group of objects together. Group the objects as children under a transform object.
Create the transform object using hgtransform. Setting the Matrix property of the transform
object adjusts the position of all its children.

• Create a movie. Movies are useful if you have a complex animation that does not draw quickly in
real time, or if you want to store an animation to replay it. Use the getframe and movie
functions to create a movie.

Updating the Screen
In some cases, MATLAB does not update the screen until the code finishes executing. Use one of the
drawnow commands to display the updates on the screen throughout the animation.

Optimizing Performance
To optimize performance, consider these techniques:

• Use the animatedline function to create line animations of streaming data.
• Update properties of an existing object instead of creating new graphics objects.
• Set the axis limits (XLim, YLim, ZLim) or change the associated mode properties to manual mode

(XLimMode, YLimMode, ZLimMode) so that MATLAB does not recalculate the values each time the
screen updates. When you set the axis limits, the associated mode properties change to manual
mode.

• Avoid creating a legend or other annotations within a loop. Add the annotation after the loop.

For more information on optimizing performance, see “Graphics Performance”.

See Also

Related Examples
• “Trace Marker Along Line” on page 7-3
• “Move Group of Objects Along Line” on page 7-5
• “Line Animations” on page 7-10
• “Record Animation for Playback” on page 7-12

7 Animation

7-2

Trace Marker Along Line

This example shows how to trace a marker along a line by updating the data properties of the marker.

Plot a sine wave and a red marker at the beginning of the line. Set the axis limits mode to manual to
avoid recalculating the limits throughout the animation loop.

x = linspace(0,10,1000);
y = sin(x);
plot(x,y)
hold on
p = plot(x(1),y(1),'o','MarkerFaceColor','red');
hold off
axis manual

Move the marker along the line by updating the XData and YData properties in a loop. Use a
drawnow or drawnow limitrate command to display the updates on the screen. drawnow
limitrate is fastest, but it might not draw every frame on the screen. Use dot notation to set
properties.

for k = 2:length(x)
 p.XData = x(k);
 p.YData = y(k);
 drawnow
end

 Trace Marker Along Line

7-3

The animation shows the marker moving along the line.

See Also
plot | drawnow | linspace

Related Examples
• “Move Group of Objects Along Line” on page 7-5
• “Animate Graphics Object” on page 7-8
• “Record Animation for Playback” on page 7-12
• “Line Animations” on page 7-10

7 Animation

7-4

Move Group of Objects Along Line

This example shows how to move a group of objects together along a line using transforms.

Plot a sine wave and set the axis limits mode to manual to avoid recalculating the limits during the
animation loop.

x = linspace(-6,6,1000);
y = sin(x);
plot(x,y)
axis manual

Create a transform object and set its parent to the current axes. Plot a marker and a text annotation
at the beginning of the line. Use the num2str function to convert the y-value at that point to text.
Group the two objects by setting their parents to the transform object.

ax = gca;
h = hgtransform('Parent',ax);
hold on
plot(x(1),y(1),'o','Parent',h);
hold off
t = text(x(1),y(1),num2str(y(1)),'Parent',h,...
 'VerticalAlignment','top','FontSize',14);

 Move Group of Objects Along Line

7-5

Move the marker and text to each subsequent point along the line by updating the Matrix property
of the transform object. Use the x and y values of the next point in the line and the first point in the
line to determine the transform matrix. Update the text to match the y-value as it moves along the
line. Use drawnow to display the updates to the screen after each iteration.

for k = 2:length(x)
 m = makehgtform('translate',x(k)-x(1),y(k)-y(1),0);
 h.Matrix = m;
 t.String = num2str(y(k));
 drawnow
end

7 Animation

7-6

The animation shows the marker and text moving together along the line.

If you have a lot of data, you can use drawnow limitrate instead of drawnow for a faster
animation. However, drawnow limitrate might not draw every update on the screen.

See Also
hgtransform | makehgtform | plot | drawnow | axis | text

Related Examples
• “Animate Graphics Object” on page 7-8
• “Record Animation for Playback” on page 7-12
• “Line Animations” on page 7-10

 Move Group of Objects Along Line

7-7

Animate Graphics Object

This example shows how to animate a triangle looping around the inside of a circle by updating the
data properties of the triangle.

Plot the circle and set the axis limits so that the data units are the same in both directions.

theta = linspace(-pi,pi);
xc = cos(theta);
yc = -sin(theta);
plot(xc,yc);
axis equal

Use the area function to draw a flat triangle. Then, change the value of one of the triangle vertices
using the (x,y) coordinates of the circle. Change the value in a loop to create an animation. Use a
drawnow or drawnow limitrate command to display the updates after each iteration. drawnow
limitrate is fastest, but it might not draw every frame on the screen.

xt = [-1 0 1 -1];
yt = [0 0 0 0];
hold on
t = area(xt,yt); % initial flat triangle
hold off
for j = 1:length(theta)-10
 xt(2) = xc(j); % determine new vertex value

7 Animation

7-8

 yt(2) = yc(j);
 t.XData = xt; % update data properties
 t.YData = yt;
 drawnow limitrate % display updates
end

The animation shows the triangle looping around the inside of the circle.

See Also
area | plot | hold | drawnow | axis

Related Examples
• “Trace Marker Along Line” on page 7-3
• “Line Animations” on page 7-10
• “Record Animation for Playback” on page 7-12

More About
• “Animation Techniques” on page 7-2

 Animate Graphics Object

7-9

Line Animations

This example shows how to create an animation of two growing lines. The animatedline function
helps you to optimize line animations. It allows you to add new points to a line without redefining
existing points.

Create Lines and Add Points

Create two animated lines of different colors. Then, add points to the lines in a loop. Set the axis
limits before the loop so that to avoid recalculating the limits each time through the loop. Use a
drawnow or drawnow limitrate command to display the updates on the screen after adding the
new points.

a1 = animatedline('Color',[0 .7 .7]);
a2 = animatedline('Color',[0 .5 .5]);

axis([0 20 -1 1])
x = linspace(0,20,10000);
for k = 1:length(x)
 % first line
 xk = x(k);
 ysin = sin(xk);
 addpoints(a1,xk,ysin);

 % second line
 ycos = cos(xk);
 addpoints(a2,xk,ycos);

 % update screen
 drawnow limitrate
end

7 Animation

7-10

The animation shows two lines that grow as they accumulate data.

Query Points of Line

Query the points of the first animated line.

[x,y] = getpoints(a1);

x and y are vectors that contain the values defining the points of the sine wave.

See Also
animatedline | addpoints | getpoints | clearpoints | drawnow

Related Examples
• “Trace Marker Along Line” on page 7-3
• “Move Group of Objects Along Line” on page 7-5
• “Record Animation for Playback” on page 7-12

More About
• “Animation Techniques” on page 7-2

 Line Animations

7-11

Record Animation for Playback

These examples show how to record animations as movies that you can replay.

Record and Play Back Movie
Create a series of plots within a loop and capture each plot as a frame. Ensure the axis limits stay
constant by setting them each time through the loop. Store the frames in M.

for k = 1:16
 plot(fft(eye(k+16)))
 axis([-1 1 -1 1])
 M(k) = getframe;
end

Play back the movie five times using the movie function.

figure
movie(M,5)

Capture Entire Figure for Movie
Create a colored panel in the figure, and place the axes in the panel before creating the plot. Capture
the entire figure window by specifying the current figure (gcf) as an input argument to the
getframe function.

f = figure;
p = uipanel(f,"Position",[0.1 0.1 0.8 0.8],...
 "BackgroundColor","w");
ax = axes(p);

7 Animation

7-12

for k = 1:16
 plot(fft(eye(k+16)))
 axis([-1 1 -1 1])
 u.Value = k;
 M(k) = getframe(gcf);
end

Create a new figure and an axes to fill the figure window so that the movie looks like the original
animation.

figure
axes("Position",[0 0 1 1])
movie(M,5)

See Also
getframe | movie | fft | eye | plot | axes | axis

Related Examples
• “Animate Graphics Object” on page 7-8
• “Line Animations” on page 7-10

More About
• “Animation Techniques” on page 7-2

 Record Animation for Playback

7-13

Animating a Surface

This example shows how to animate a surface. Specifically, this example animates a spherical
harmonic. Spherical harmonics are spherical versions of Fourier series and can be used to model the
free oscillations of the Earth.

Define the Spherical Grid

Define a set of points on a spherical grid to calculate the harmonic.

theta = 0:pi/40:pi;
phi = 0:pi/20:2*pi;

[phi,theta] = meshgrid(phi,theta);

Calculate the Spherical Harmonic

Calculate the spherical harmonic with a degree of six, an order of one, and an amplitude of 0.5 on the
surface of a sphere with a radius equal to five. Then, convert the values to Cartesian coordinates.

degree = 6;
order = 1;
amplitude = 0.5;
radius = 5;

Ymn = legendre(degree,cos(theta(:,1)));
Ymn = Ymn(order+1,:)';
yy = Ymn;

for kk = 2: size(theta,1)
 yy = [yy Ymn];
end

yy = yy.*cos(order*phi);

order = max(max(abs(yy)));
rho = radius + amplitude*yy/order;

r = rho.*sin(theta);
x = r.*cos(phi);
y = r.*sin(phi);
z = rho.*cos(theta);

Plot the Spherical Harmonic on the Surface of a Sphere

Using the surf function, plot the spherical harmonic on the surface of the sphere.

figure
s = surf(x,y,z);

light
lighting gouraud
axis equal off
view(40,30)
camzoom(1.5)

7 Animation

7-14

Animate the Surface

To animate the surface, use a for loop to change the data in your plot. To replace the surface data, set
the XData, YData, and ZData properties of the surface to new values. To control the speed of the
animation, use pause after updating the surface data.

scale = [linspace(0,1,20) linspace(1,-1,40)];

for ii = 1:length(scale)

 rho = radius + scale(ii)*amplitude*yy/order;

 r = rho.*sin(theta);
 x = r.*cos(phi);
 y = r.*sin(phi);
 z = rho.*cos(theta);

 s.XData = x;
 s.YData = y;
 s.ZData = z;

 pause(0.05)
end

 Animating a Surface

7-15

See Also
surf | lighting

7 Animation

7-16

Titles and Labels

• “Add Title and Axis Labels to Chart” on page 8-2
• “Add Legend to Graph” on page 8-8
• “Add Text to Chart” on page 8-15
• “Add Annotations to Chart” on page 8-22
• “Greek Letters and Special Characters in Chart Text” on page 8-26
• “Make the Graph Title Smaller” on page 8-35

8

Add Title and Axis Labels to Chart

This example shows how to add a title and axis labels to a chart by using the title, xlabel, and
ylabel functions. It also shows how to customize the appearance of the axes text by changing the
font size.

Create Simple Line Plot

Create x as 100 linearly spaced values between −2π and 2π. Create y1 and y2 as sine and cosine
values of x. Plot both sets of data.

x = linspace(-2*pi,2*pi,100);
y1 = sin(x);
y2 = cos(x);
figure
plot(x,y1,x,y2)

Add Title

Add a title to the chart by using the title function. To display the Greek symbol π, use the TeX
markup, \pi.

title('Line Plot of Sine and Cosine Between -2\pi and 2\pi')

8 Titles and Labels

8-2

Add Axis Labels

Add axis labels to the chart by using the xlabel and ylabel functions.

xlabel('-2\pi < x < 2\pi')
ylabel('Sine and Cosine Values')

 Add Title and Axis Labels to Chart

8-3

Add Legend

Add a legend to the graph that identifies each data set using the legend function. Specify the legend
descriptions in the order that you plot the lines. Optionally, specify the legend location using one of
the eight cardinal or intercardinal directions, in this case, 'southwest'.

legend({'y = sin(x)','y = cos(x)'},'Location','southwest')

8 Titles and Labels

8-4

Change Font Size

Axes objects have properties that you can use to customize the appearance of the axes. For example,
the FontSize property controls the font size of the title, labels, and legend.

Access the current Axes object using the gca function. Then use dot notation to set the FontSize
property.

ax = gca;
ax.FontSize = 13;

 Add Title and Axis Labels to Chart

8-5

Alternatively, starting in R2022a, you can change the font size of the axes text by using the fontsize
function.

Title with Variable Value

Include a variable value in the title text by using the num2str function to convert the value to text.
You can use a similar approach to add variable values to axis labels or legend entries.

Add a title with the value of sin(π)/2.

k = sin(pi/2);
title(['sin(\pi/2) = ' num2str(k)])

8 Titles and Labels

8-6

See Also
title | xlabel | ylabel | legend | linspace | fontsize

Related Examples
• “Specify Axis Limits” on page 9-2
• “Specify Axis Tick Values and Labels” on page 9-9

 Add Title and Axis Labels to Chart

8-7

Add Legend to Graph

Legends are a useful way to label data series plotted on a graph. These examples show how to create
a legend and make some common modifications, such as changing the location, setting the font size,
and adding a title. You also can create a legend with multiple columns or create a legend for a subset
of the plotted data.

Create Simple Legend

Create a figure with a line chart and a scatter chart. Add a legend with a description for each chart.
Specify the legend labels as inputs to the legend function.

figure
x1 = linspace(0,5);
y1 = sin(x1/2);
plot(x1,y1)

hold on
x2 = [0 1 2 3 4 5];
y2 = [0.2 0.3 0.6 1 0.7 0.6];
scatter(x2,y2,'filled')
hold off

legend('sin(x/2)','2016')

8 Titles and Labels

8-8

Specify Labels Using DisplayName

Alternatively, you can specify the legend labels using the DisplayName property. Set the
DisplayName property as a name-value pair when calling the plotting functions. Then, call the
legend command to create the legend.

x1 = linspace(0,5);
y1 = sin(x1/2);
plot(x1,y1,'DisplayName','sin(x/2)')

hold on
x2 = [0 1 2 3 4 5];
y2 = [0.2 0.3 0.6 1 0.7 0.6];
scatter(x2,y2,'filled','DisplayName','2016')

legend

Legends automatically update when you add or delete a data series. If you add more data to the axes,
use the DisplayName property to specify the labels. If you do not set the DisplayName property,
then the legend uses a label of the form 'dataN'.

Add a scatter chart for 2017 data.

x3 = [0 1 2 3 4 5];
y3 = [0.1 0.4 0.6 0.9 0.8 0.7];
scatter(x3,y3,'filled','DisplayName','2017')
drawnow
hold off

 Add Legend to Graph

8-9

Customize Legend Appearance

The legend function creates a Legend object. Legend objects have properties that you can use to
customize the appearance of the legend, such as the Location, Orientation, FontSize, and
Title properties. For a full list, see Legend Properties.

You can set properties in two ways:

• Use name-value pairs in the legend command. In most cases, when you use name-value pairs,
you must specify the labels in a cell array, such as
legend({'label1','label2'},'FontSize',14).

• Use the Legend object. You can return the Legend object as an output argument from the
legend function, such as lgd = legend. Then, use lgd with dot notation to set properties, such
as lgd.FontSize = 14.

Legend Location and Orientation

Specify the legend location and orientation by setting the Location and Orientation properties as
name-value pairs. Set the location to one of the eight cardinal or intercardinal directions, in this case,
'northwest'. Set the orientation to 'vertical' (the default) or 'horizontal', as in this case.
Specify the labels in a cell array.

x1 = linspace(0,5);
y1 = sin(x1/2);
plot(x1,y1)

hold on
x2 = [0 1 2 3 4 5];
y2 = [0.2 0.3 0.6 1 0.7 0.6];
scatter(x2,y2,'filled')
hold off

legend({'sin(x/2)','2016'},'Location','northwest','Orientation','horizontal')

8 Titles and Labels

8-10

Legend Font Size and Title

Specify the legend font size and title by setting the FontSize and Title properties. Assign the
Legend object to the variable lgd. Then, use lgd to change the properties using dot notation.

x1 = linspace(0,5);
y1 = sin(x1/2);
plot(x1,y1,'DisplayName','sin(x/2)')

hold on
x2 = [0 1 2 3 4 5];
y2 = [0.2 0.3 0.6 1 0.7 0.6];
scatter(x2,y2,'filled','DisplayName','2016')
hold off

lgd = legend;
lgd.FontSize = 14;
lgd.Title.String = '2016 Data';

 Add Legend to Graph

8-11

Legend with Multiple Columns

Create a chart with six line plots. Add a legend with two columns by setting the NumColumns
property to 2.

x = linspace(0,10);
y1 = sin(x);
y2 = sin(0.9*x);
y3 = sin(0.8*x);
y4 = sin(0.7*x);
y5 = sin(0.6*x);
y6 = sin(0.5*x);

plot(x,y1,'DisplayName','sin(x)')
hold on
plot(x,y2,'DisplayName','sin(0.9x)')
plot(x,y3,'DisplayName','sin(0.8x)')
plot(x,y4,'DisplayName','sin(0.7x)')
plot(x,y5,'DisplayName','sin(0.6x)')
plot(x,y6,'DisplayName','sin(0.5x)')
hold off

lgd = legend;
lgd.NumColumns = 2;

8 Titles and Labels

8-12

Include Subset of Charts in Legend

Combine two bar charts and a scatter chart. Create a legend that includes only the bar charts by
specifying the Bar objects, b1 and b2, as the first input argument to the legend function. Specify the
objects in a vector.

x = [1 2 3 4 5];
y1 = [.2 .4 .6 .4 .2];
b1 = bar(x,y1);

hold on
y2 = [.1 .3 .5 .3 .1];
b2 = bar(x,y2,'BarWidth',0.5);

y3 = [.2 .4 .6 .4 .2];
s = scatter(x,y3,'filled');
hold off

legend([b1 b2],'Bar Chart 1','Bar Chart 2')

 Add Legend to Graph

8-13

See Also
legend | Legend Properties

8 Titles and Labels

8-14

Add Text to Chart

This example shows how to add text to a chart, control the text position and size, and create multiline
text.

Text Position

Add text next to a particular data point using the text function. In this case, add text to the point
(π, sin(π)). The first two input arguments to the text function specify the position. The third
argument specifies the text.

By default, text supports a subset of TeX markup. Use the TeX markup \pi for the Greek letter π.
Display an arrow pointing to the left by including the TeX markup \leftarrow. For a full list of
markup, see “Greek Letters and Special Characters in Chart Text” on page 8-26.

x = linspace(0,10,50);
y = sin(x);
plot(x,y)

txt = '\leftarrow sin(\pi) = 0';
text(pi,sin(pi),txt)

 Add Text to Chart

8-15

Text Alignment

By default, the specified data point is to the left of the text. Align the data point to the right of the
text by specifying the HorizontalAlignment property as 'right'. Use an arrow pointing to the
right instead of to the left.

x = linspace(0,10,50);
y = sin(x);
plot(x,y)

txt = 'sin(\pi) = 0 \rightarrow';
text(pi,sin(pi),txt,'HorizontalAlignment','right')

Font Size

Specify the font size for text by setting the FontSize property as a name-value pair argument to the
text function. You can use a similar approach to change the font size when using the title,
xlabel, ylabel, or legend functions.

x = linspace(0,10,50);
y = sin(x);
plot(x,y)

txt = '\leftarrow sin(\pi) = 0';
text(pi,sin(pi),txt,'FontSize',14)

8 Titles and Labels

8-16

Alternatively, starting in R2022a, you can change the font size of the axes text by using the fontsize
function.

Setting Text Properties

The text function creates a Text object. Text objects have properties that you can use to customize
the appearance of the text, such as the HorizontalAlignment or FontSize.

You can set properties in two ways:

• Use name-value pairs in the text command, such as 'FontSize',14.
• Use the Text object. You can return the Text object as an output argument from the text

function and assign it to a variable, such as t. Then, use dot notation to set properties, such as
t.FontSize = 14.

For this example, change the font size using dot notation instead of a name-value pair.

x = linspace(0,10,50);
y = sin(x);
plot(x,y)

txt = '\leftarrow sin(\pi) = 0';
t = text(pi,sin(pi),txt)

t =
 Text (\leftarrow sin(\pi) = 0) with properties:

 Add Text to Chart

8-17

 String: '\leftarrow sin(\pi) = 0'
 FontSize: 10
 FontWeight: 'normal'
 FontName: 'Helvetica'
 Color: [0 0 0]
 HorizontalAlignment: 'left'
 Position: [3.1416 1.2246e-16 0]
 Units: 'data'

 Show all properties

t.FontSize = 14;

Multiline Text

Display text across multiple lines using a cell array of character vectors. Each element of the cell
array is one line of text. For this example, display a title with two lines. You can use a similar
approach to display multiline text with the title, xlabel, ylabel, or legend functions.

x = linspace(0,10,50);
y = sin(x);
plot(x,y)

txt = {'Plotted Data:','y = sin(x)'};
text(4,0.5,txt)

8 Titles and Labels

8-18

Text with Variable Value

Include a variable value in text by using the num2str function to convert the number to text. For this
example, calculate the average y value and include the value in the title. You can use a similar
approach to include variable values with the title, xlabel, ylabel, or legend functions.

x = linspace(0,10,50);
y = sin(x);
plot(x,y)

avg = mean(y);
txt = ['Average height: ' num2str(avg) ' units'];
text(4,0.5,txt)

 Add Text to Chart

8-19

Text Outside Axes

Add text anywhere within the figure using the annotation function instead of the text function.
The first input argument specifies the type of annotation. The second input argument specifies the
position of the annotation in units normalized to the figure. Remove the text box border by setting the
EdgeColor property to 'none'. For more information on text box annotations, see the annotation
function.

x = linspace(0,10,50);
y = sin(x);
plot(x,y)

annotation('textbox',[.9 .5 .1 .2], ...
 'String','Text outside the axes','EdgeColor','none')

8 Titles and Labels

8-20

See Also
text | title | xlabel | ylabel | annotation | fontsize

Related Examples
• “Greek Letters and Special Characters in Chart Text” on page 8-26

 Add Text to Chart

8-21

Add Annotations to Chart

Annotations are extra information added to a chart to help identify important information. This
example first explains the different types of annotations, and then shows you how to add circles and
text arrows to a chart.

Types of Annotations

Use the annotation function to add annotations to a chart. The first input to the function specifies
the type of annotation you want to create.

• If you specify the type as 'line', 'arrow', 'doublearrow', or 'textarrow', then the second
input is the starting and ending x positions of the annotation. The third input is the starting and
ending y positions of the annotation. For example, annotation('line',[x_begin x_end],
[y_begin y_end]).

• If you specify the type as 'rectangle', 'ellipse', or 'textbox', then the second argument is
the location and size. For example, annotation('rectangle',[x y w h]).

Annotations use normalized figure units and can span multiple axes in a figure.

Create Simple Plot

Define and plot functions f(x) and g(x).

x = -3.0:0.01:3.0;
f = x.^2;
g = 5*sin(x) + 5;

figure
plot(x,f)
hold on
plot(x,g)
hold off

8 Titles and Labels

8-22

Circle Annotations

Add a circle to the chart to highlight where f(x) and g(x) are equal. To create a circle, use the
'ellipse' option for the annotation type.

Customize the circle by setting properties of the underlying object. Return the Ellipse object as an
output argument from the annotation function. Then, access properties of the object using dot
notation. For example, set the Color property.

elps = annotation('ellipse',[.84 .68 .05 .05])

elps =
 Ellipse with properties:

 Color: [0 0 0]
 FaceColor: 'none'
 LineStyle: '-'
 LineWidth: 0.5000
 Position: [0.8400 0.6800 0.0500 0.0500]
 Units: 'normalized'

 Show all properties

elps.Color = [0 0.5 0.5];

 Add Annotations to Chart

8-23

Text Arrow Annotations

Add a text arrow to the chart using the 'textarrow' option for the annotation type.

You can customize the text arrow by setting properties of the underlying object. Return the
TextArrow object as an output argument from the annotation function. Then, access properties of
the object using dot notation. For example, set the String property to the desired text and the
Color property to a color value.

ta = annotation('textarrow', [0.76 0.83], [0.71 0.71])

ta =
 TextArrow with properties:

 String: {''}
 FontName: 'Helvetica'
 FontSize: 10
 Color: [0 0 0]
 TextColor: [0 0 0]
 LineStyle: '-'
 LineWidth: 0.5000
 HeadStyle: 'vback2'
 Position: [0.7600 0.7100 0.0700 0]
 Units: 'normalized'
 X: [0.7600 0.8300]
 Y: [0.7100 0.7100]

8 Titles and Labels

8-24

 Show all properties

ta.String = 'f(x) = g(x) ';
ta.Color = [0 0.5 0.5];

See Also
text | annotation

Related Examples
• “Greek Letters and Special Characters in Chart Text” on page 8-26

 Add Annotations to Chart

8-25

Greek Letters and Special Characters in Chart Text
You can add text to a chart that includes Greek letters and special characters using TeX markup. You
also can use TeX markup to add superscripts, subscripts, and modify the text type and color. By
default, MATLAB supports a subset of TeX markup. To use additional special characters, such as
integral and summation symbols, you can use LaTeX markup instead. This example shows how to
insert Greek letters, superscripts, and annotations into chart text and explains other available TeX
options.

Include Greek Letters

Create a simple line plot and add a title. Include the Greek letter π in the title by using the TeX
markup \pi.

x = linspace(0,2*pi);
y = sin(x);
plot(x,y)
title('x ranges from 0 to 2\pi')

Include Superscripts and Annotations

8 Titles and Labels

8-26

Create a line plot and add a title and axis labels to the chart. Display a superscript in the title using
the ^ character. The ^ character modifies the character immediately following it. Include multiple
characters in the superscript by enclosing them in curly braces {}. Include the Greek letters α and μ
in the text using the TeX markups \alpha and \mu, respectively.

t = 1:900;
y = 0.25*exp(-0.005*t);

figure
plot(t,y)
title('Ae^{\alphat} for A = 0.25 and \alpha = -0.0005')
xlabel('Time')
ylabel('Amplitude')

Add text at the data point where t = 300. Use the TeX markup \bullet to add a marker to the
specified point and use \leftarrow to include an arrow pointing to the left. By default, the specified
data point is to the left of the text.

txt = '\bullet \leftarrow 0.25t e^{-0.005t} at t = 300';
text(t(300),y(300),txt)

 Greek Letters and Special Characters in Chart Text

8-27

TeX Markup Options
MATLAB supports a subset of TeX markup. Use TeX markup to add superscripts and subscripts,
modify the text type and color, and include special characters. MATLAB interprets the TeX markup as
long as the Interpreter property of the text object is set to 'tex' (the default).

Modifiers remain in effect until the end of the text. Superscripts and subscripts are an exception
because they modify only the next character or the characters within the curly braces. When you set
the interpreter to 'tex', the supported modifiers are as follows.

Modifier Description Example
^{ } Superscript 'text^{superscript}'
{ } Subscript 'text{subscript}'
\bf Bold font '\bf text'
\it Italic font '\it text'
\sl Oblique font (usually the same

as italic font)
'\sl text'

\rm Normal font '\rm text'

8 Titles and Labels

8-28

Modifier Description Example
\fontname{specifier} Font name — Replace

specifier with the name of a
font family. You can use this in
combination with other
modifiers.

'\fontname{Courier}
text'

\fontsize{specifier} Font size —Replace specifier
with a numeric scalar value in
point units.

'\fontsize{15} text'

\color{specifier} Font color — Replace
specifier with one of these
colors: red, green, yellow,
magenta, blue, black, white,
gray, darkGreen, orange, or
lightBlue.

'\color{magenta} text'

\color[rgb]{specifier} Custom font color — Replace
specifier with a three-
element RGB triplet.

'\color[rgb]{0,0.5,0.5}
text'

This table lists the supported special characters for the 'tex' interpreter.

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\alpha α \upsilon υ \sim ~
\angle ∠ \phi ϕ \leq ≤
\ast * \chi χ \infty ∞
\beta β \psi ψ \clubsuit ♣
\gamma γ \omega ω \diamondsuit ♦
\delta δ \Gamma Γ \heartsuit ♥
\epsilon ϵ \Delta Δ \spadesuit ♠
\zeta ζ \Theta Θ \leftrightar

row
↔

\eta η \Lambda Λ \leftarrow ←
\theta θ \Xi Ξ \Leftarrow ⇐
\vartheta ϑ \Pi Π \uparrow ↑
\iota ι \Sigma Σ \rightarrow →
\kappa κ \Upsilon ϒ \Rightarrow ⇒
\lambda λ \Phi Φ \downarrow ↓
\mu µ \Psi Ψ \circ º
\nu ν \Omega Ω \pm ±
\xi ξ \forall ∀ \geq ≥
\pi π \exists ∃ \propto ∝
\rho ρ \ni ∍ \partial ∂

 Greek Letters and Special Characters in Chart Text

8-29

Character
Sequence

Symbol Character
Sequence

Symbol Character
Sequence

Symbol

\sigma σ \cong ≅ \bullet •
\varsigma ς \approx ≈ \div ÷
\tau τ \Re ℜ \neq ≠
\equiv ≡ \oplus ⊕ \aleph ℵ
\Im ℑ \cup ∪ \wp ℘
\otimes ⊗ \subseteq ⊆ \oslash ∅
\cap ∩ \in ∈ \supseteq ⊇
\supset ⊃ \lceil ⌈ \subset ⊂
\int ∫ \cdot · \o ο
\rfloor ⌋ \neg ¬ \nabla ∇
\lfloor ⌊ \times x \ldots ...
\perp ⊥ \surd √ \prime ´
\wedge ∧ \varpi ϖ \0 ∅
\rceil ⌉ \rangle 〉 \mid |
\vee ∨ \langle 〈 \copyright ©

Create Text with LaTeX

By default, MATLAB interprets text using TeX markup. However, for more formatting options, you can
use LaTeX markup instead.

For example, plot y = x2sin(x) and draw a vertical line at x = 2. Add text to the graph that contains an
integral expression using LaTeX markup. To show the expression in display mode, surround the
markup with double dollar signs ($$). When you call the text function, set the Interpreter
property to 'latex'.

x = linspace(0,3);
y = x.^2.*sin(x);
plot(x,y)
line([2,2],[0,2^2*sin(2)])

str = '$$ \int_{0}^{2} x^2\sin(x) dx $$';
text(1.1,0.5,str,'Interpreter','latex')

8 Titles and Labels

8-30

Create Plot Titles, Tick Labels, and Legends with LaTeX

You can use LaTeX markup in plot titles, tick labels, and legends. For example, create a plot of a sine
wave and a cosine wave.

x = -10:0.1:10;
y = [sin(x); cos(x)];
plot(x,y)

 Greek Letters and Special Characters in Chart Text

8-31

Set the x-axis tick values to be multiples of pi by calling the xticks function. Then, call the gca
function to get the current axes, and set the the TicklabelInterpreter property to 'latex'.
Specify the tick labels using LaTeX markup. For inline expressions, surround the markup with single
dollar signs ($).

xticks([-3*pi -2*pi -pi 0 pi 2*pi 3*pi])
ax = gca;
ax.TickLabelInterpreter = 'latex';
xticklabels({'-3π','-2π','$-\pi$','0', 'π','2π','3π'});

8 Titles and Labels

8-32

Add a title that includes LaTeX markup by calling the title function and setting the Interpreter
property to 'latex'. Similarly, create a legend with labels that include LaTeX markup.

% Add title
str = 'Estimates $\hat{\psi_1}$ and $\hat{\psi_2}$';
title(str,'Interpreter','latex')

% Add legend
label1 = '$\hat{\psi_1}$';
label2 = '$\hat{\psi_2}$';
legend(label1,label2,'Interpreter','latex')

 Greek Letters and Special Characters in Chart Text

8-33

See Also
text | plot | title | xlabel | ylabel

More About
• “Add Title and Axis Labels to Chart” on page 8-2
• “Add Text to Chart” on page 8-15

External Websites
• https://www.latex-project.org/

8 Titles and Labels

8-34

https://www.latex-project.org/

Make the Graph Title Smaller
MATLAB graphics titles use a bold and slightly larger font for better visibility. As a result, some text
might not fit within the extents of the figure window. For example, this code creates a graph that has
a long title that does not fit within the extents of the figure window.

plot(1:10);
title(['This is a title that is too long and does not fit',...
 'within the extents of the figure window.'])

The title font size is based on the TitleFontSizeMultiplier and FontSize properties of the
axes. By default the FontSize property is 10 points and the TitleFontSizeMultiplier is 1.100,
which means that the title font size is 11 points.

To change the title font size without affecting the rest of the font in the axes, set the
TitleFontSizeMultiplier property of the axes.

plot(1:10);
title(['This is a title that is too long and does not fit',...
 'within the extents of the figure window.'])
ax = gca;
ax.TitleFontSizeMultiplier = 1;

To make the font size smaller for the entire axes, set the FontSize property. Changing this property
affects the font for the title, tick labels and axis labels, if they exist.

plot(1:10);
title(['This is a title that is too long and does not fit',...
 'within the extents of the figure window.'])

 Make the Graph Title Smaller

8-35

ax = gca;
ax.FontSize = 8;

To keep the same font size and display the title across two lines, use a cell array with curly brackets
{} to define a multiline title.

plot(1:10);
title({'This is a title that is too long and does not fit',...
 'within the extents of the figure window.'})

See Also
Functions
title

Properties
Axes

8 Titles and Labels

8-36

Axes Appearance

• “Specify Axis Limits” on page 9-2
• “Specify Axis Tick Values and Labels” on page 9-9
• “Add Grid Lines and Edit Placement” on page 9-16
• “Combine Multiple Plots” on page 9-24
• “Customized Presentations and Special Effects with Tiled Chart Layouts” on page 9-33
• “Create Chart with Two y-Axes” on page 9-44
• “Modify Properties of Charts with Two y-Axes” on page 9-52
• “Display Data with Multiple Scales and Axes Limits” on page 9-58
• “Control Ratio of Axis Lengths and Data Unit Lengths” on page 9-68
• “Control Axes Layout” on page 9-76
• “Manipulating Axes Aspect Ratio” on page 9-82
• “Specify Plot Colors” on page 9-94
• “Specify Line and Marker Appearance in Plots” on page 9-102
• “Control How Plotting Functions Select Colors and Line Styles” on page 9-111
• “Clipping in Plots and Graphs” on page 9-117
• “Using Graphics Smoothing” on page 9-119

9

Specify Axis Limits

You can control where data appears in the axes by setting the x-axis, y-axis, and z-axis limits. You also
can change where the x-axis and y-axis lines appear (2-D plots only) or reverse the direction of
increasing values along each axis.

Change Axis Limits

Create a line plot. Specify the axis limits using the xlim and ylim functions. For 3-D plots, use the
zlim function. Pass the functions a two-element vector of the form [min max].

x = linspace(-10,10,200);
y = sin(4*x)./exp(x);
plot(x,y)
xlim([0 10])
ylim([-0.4 0.8])

Use Semiautomatic Axis Limits

Set the maximum x-axis limit to 0 and the minimum y-axis limit to -1. Let MATLAB choose the other
limits. For an automatically calculated minimum or maximum limit, use -inf or inf, respectively.

[X,Y,Z] = peaks;
surf(X,Y,Z)
xlabel('x-axis')
ylabel('y-axis')

9 Axes Appearance

9-2

xlim([-inf 0])
ylim([-1 inf])

Revert Back to Default Limits

Create a mesh plot and change the axis limits. Then revert back to the default limits.

[X,Y,Z] = peaks;
mesh(X,Y,Z)
xlim([-2 2])
ylim([-2 2])
zlim([-5 5])

 Specify Axis Limits

9-3

xlim auto
ylim auto
zlim auto

9 Axes Appearance

9-4

Reverse Axis Direction

Control the direction of increasing values along the x-axis and y-axis by setting the XDir and YDir
properties of the Axes object. Set these properties to either 'reverse' or 'normal' (the default).
Use the gca command to access the Axes object.

stem(1:10)
ax = gca;
ax.XDir = 'reverse';
ax.YDir = 'reverse';

 Specify Axis Limits

9-5

Display Axis Lines through Origin

By default, the x-axis and y-axis appear along the outer bounds of the axes. Change the location of the
axis lines so that they cross at the origin point (0,0) by setting the XAxisLocation and
YAxisLocation properties of the Axes object. Set XAxisLocation to either 'top', 'bottom', or
'origin'. Set YAxisLocation to either 'left', 'right', or 'origin'. These properties only
apply to axes in a 2-D view.

x = linspace(-5,5);
y = sin(x);
plot(x,y)

ax = gca;
ax.XAxisLocation = 'origin';
ax.YAxisLocation = 'origin';

9 Axes Appearance

9-6

Remove the axes box outline.

box off

 Specify Axis Limits

9-7

See Also
Functions
axis | xlim | ylim | zlim | xticks | yticks | zticks | grid

Properties
Axes

Related Examples
• “Specify Axis Tick Values and Labels” on page 9-9
• “Add Grid Lines and Edit Placement” on page 9-16
• “Add Title and Axis Labels to Chart” on page 8-2

9 Axes Appearance

9-8

Specify Axis Tick Values and Labels

Customizing the tick values and labels along an axis can help highlight particular aspects of your
data. These examples show some common customizations, such as modifying the tick value
placement, changing the tick label text and formatting, and rotating the tick labels.

Change Tick Value Locations and Labels

Create x as 200 linearly spaced values between -10 and 10. Create y as the cosine of x. Plot the data.

x = linspace(-10,10,200);
y = cos(x);
plot(x,y)

Change the tick value locations along the x-axis and y-axis. Specify the locations as a vector of
increasing values. The values do not need to be evenly spaced.

Also, change the labels associated with each tick value along the x-axis. Specify the labels using a cell
array of character vectors. To include special characters or Greek letters in the labels, use TeX
markup, such as \pi for the π symbol.

xticks([-3*pi -2*pi -pi 0 pi 2*pi 3*pi])
xticklabels({'-3\pi','-2\pi','-\pi','0','\pi','2\pi','3\pi'})
yticks([-1 -0.8 -0.2 0 0.2 0.8 1])

 Specify Axis Tick Values and Labels

9-9

For releases prior to R2016b, instead set the tick values and labels using the XTick, XTickLabel,
YTick, and YTickLabel properties of the Axes object. For example, assign the Axes object to a
variable, such as ax = gca. Then set the XTick property using dot notation, such as ax.XTick =
[-3*pi -2*pi -pi 0 pi 2*pi 3*pi]. For releases prior to R2014b, use the set function to set
the property instead.

Rotate Tick Labels

Create a scatter plot and rotate the tick labels along each axis. Specify the rotation as a scalar value.
Positive values indicate counterclockwise rotation. Negative values indicate clockwise rotation.

x = 1000*rand(40,1);
y = rand(40,1);
scatter(x,y)
xtickangle(45)
ytickangle(90)

9 Axes Appearance

9-10

For releases prior to R2016b, specify the rotation using the XTickLabelRotation and
YTickLabelRotation properties of the Axes object. For example, assign the Axes object to a
variable, such as ax = gca. Then set the XTickLabelRotation property using dot notation, such
as ax.XTickLabelRotation = 45.

Change Tick Label Formatting

Create a stem chart and display the tick label values along the y-axis as US dollar values.

profit = [20 40 50 40 50 60 70 60 70 60 60 70 80 90];
stem(profit)
xlim([0 15])
ytickformat('usd')

 Specify Axis Tick Values and Labels

9-11

For more control over the formatting, specify a custom format. For example, show one decimal value
in the x-axis tick labels using '%.1f'. Display the y-axis tick labels as British Pounds using
'\xA3%.2f'. The option \xA3 indicates the Unicode character for the Pound symbol. For more
information on specifying a custom format, see the xtickformat function.

xtickformat('%.1f')
ytickformat('\xA3%.2f')

9 Axes Appearance

9-12

Ruler Objects for Individual Axis Control

MATLAB creates a ruler object for each axis. Like all graphics objects, ruler objects have properties
that you can view and modify. Ruler objects allow for more individual control over the formatting of
the x-axis, y-axis, or z-axis. Access the ruler object associated with a particular axis through the
XAxis, YAxis, or ZAxis property of the Axes object. The type of ruler depends on the type of data
along the axis. For numeric data, MATLAB creates a NumericRuler object.

ax = gca;
ax.XAxis

ans =
 NumericRuler with properties:

 Limits: [0 15]
 Scale: 'linear'
 Exponent: 0
 TickValues: [0 5 10 15]
 TickLabelFormat: '%.1f'

 Show all properties

Control Value in Exponent Label Using Ruler Objects

Plot data with y values that range between -15,000 and 15,000. By default, the y-axis tick labels use
exponential notation with an exponent value of 4 and a base of 10. Change the exponent value to 2.

 Specify Axis Tick Values and Labels

9-13

Set the Exponent property of the ruler object associated with the y-axis. Access the ruler object
through the YAxis property of the Axes object. The exponent label and the tick labels change
accordingly.

x = linspace(0,5,1000);
y = 100*exp(x).*sin(20*x);
plot(x,y)

ax = gca;
ax.YAxis.Exponent = 2;

Change the exponent value to 0 so that the tick labels do not use exponential notation.

ax.YAxis.Exponent = 0;

9 Axes Appearance

9-14

See Also
Functions
xlim | xticks | yticks | zticks | xtickformat | xtickangle

Properties
Axes | NumericRuler

Related Examples
• “Add Grid Lines and Edit Placement” on page 9-16
• “Specify Axis Limits” on page 9-2
• “Add Title and Axis Labels to Chart” on page 8-2

 Specify Axis Tick Values and Labels

9-15

Add Grid Lines and Edit Placement

This example shows how to add grid lines to a graph. It also describes how to edit the placement of
the grid lines and modify their appearance.

Display Grid Lines

Create a bar chart and display grid lines. The grid lines appear at the tick marks.

y = rand(10,1);
bar(y)
grid on

Add minor grid lines between the tick marks.

grid minor

9 Axes Appearance

9-16

Turn off all the grid lines.

grid off

 Add Grid Lines and Edit Placement

9-17

Display Grid Lines in Specific Direction

Display the grid lines in a particular direction by accessing the Axes object and setting the XGrid,
YGrid, and ZGrid properties. Set these properties to either 'on' or 'off'.

Create a 2-D plot and display the grid lines only in the y direction.

y = rand(10,1);
bar(y)
ax = gca;
ax.XGrid = 'off';
ax.YGrid = 'on';

9 Axes Appearance

9-18

Create a 3-D plot and display the grid lines only in the z direction. Use the box on command to show
the box outline around the axes.

[X,Y,Z] = peaks;
surf(X,Y,Z)
box on
ax = gca;
ax.ZGrid = 'on';
ax.XGrid = 'off';
ax.YGrid = 'off';

 Add Grid Lines and Edit Placement

9-19

Edit Grid Line Placement

Create a scatter plot of random data and display the grid lines.

x = rand(50,1);
y = rand(50,1);
scatter(x,y)
grid on

9 Axes Appearance

9-20

Grid lines appear at the tick mark locations. Edit the placement of the grid lines by changing the tick
mark locations.

xticks(0:0.2:1)
yticks([0 0.5 0.8 1])

 Add Grid Lines and Edit Placement

9-21

Modify Visual Appearance of Grid Lines

Change the color, line style, and transparency of grid lines for an area plot. Modify the appearance of
the grid lines by accessing the Axes object. Then set properties related to the grid, such as the
GridColor, GridLineStyle, and GridAlpha properties. Display the grid lines on top of the plot by
setting the Layer property.

y = rand(10,1);
area(y)
grid on

ax = gca;
ax.GridColor = [0 .5 .5];
ax.GridLineStyle = '--';
ax.GridAlpha = 0.5;
ax.Layer = 'top';

9 Axes Appearance

9-22

See Also
Functions
grid | xticks | xlim | yticks | zticks

Properties
Axes

Related Examples
• “Specify Axis Tick Values and Labels” on page 9-9
• “Add Title and Axis Labels to Chart” on page 8-2
• “Specify Axis Limits” on page 9-2

 Add Grid Lines and Edit Placement

9-23

Combine Multiple Plots

Since R2019b. Replaces Combine Multiple Plots (R2019a).

This example shows how to combine plots in the same axes using the hold function, and how to
create multiple axes in a figure using the tiledlayout function.

Combine Plots in Same Axes

By default, new plots clear existing plots and reset axes properties, such as the title. However, you
can use the hold on command to combine multiple plots in the same axes. For example, plot two
lines and a scatter plot. Then reset the hold state to off.

x = linspace(0,10,50);
y1 = sin(x);
plot(x,y1)
title('Combine Plots')

hold on

y2 = sin(x/2);
plot(x,y2)

y3 = 2*sin(x);
scatter(x,y3)

hold off

9 Axes Appearance

9-24

https://www.mathworks.com/help/releases/R2019a/matlab/creating_plots/combine-multiple-plots.html

When the hold state is on, new plots do not clear existing plots or reset axes properties, such as the
title or axis labels. The plots cycle through colors and line styles based on the ColorOrder and
LineStyleOrder properties of the axes. The axes limits and tick values might adjust to
accommodate new data.

Display Multiple Axes in a Figure

You can display multiple axes in a single figure by using the tiledlayout function. This function
creates a tiled chart layout containing an invisible grid of tiles over the entire figure. Each tile can
contain an axes for displaying a plot. After creating a layout, call the nexttile function to place an
axes object into the layout. Then call a plotting function to plot into the axes. For example, create two
plots in a 2-by-1 layout. Add a title to each plot.

x = linspace(0,10,50);
y1 = sin(x);
y2 = rand(50,1);
tiledlayout(2,1)

% Top plot
nexttile
plot(x,y1)
title('Plot 1')

% Bottom plot
nexttile
scatter(x,y2)
title('Plot 2')

 Combine Multiple Plots

9-25

Create Plot Spanning Multiple Rows or Columns

To create a plot that spans multiple rows or columns, specify the span argument when you call
nexttile. For example, create a 2-by-2 layout. Plot into the first two tiles. Then create a plot that
spans one row and two columns.

x = linspace(0,10,50);
y1 = sin(x);
y2 = rand(50,1);

% Top two plots
tiledlayout(2,2)
nexttile
plot(x,y1)
nexttile
scatter(x,y2)

% Plot that spans
nexttile([1 2])
y2 = rand(50,1);
plot(x,y2)

9 Axes Appearance

9-26

Modify Axes Appearance

Modify the axes appearance by setting properties on each of the axes objects. You can get the axes
object by calling the nexttile function with an output argument. You also can specify the axes
object as the first input argument to a graphics function to ensure that the function targets the
correct axes.

For example, create two plots and assign the axes objects to the variables ax1 and ax2. Change the
axes font size and x-axis color for the first plot. Add grid lines to the second plot.

x = linspace(0,10,50);
y1 = sin(x);
y2 = rand(50,1);
tiledlayout(2,1)

% Top plot
ax1 = nexttile;
plot(ax1,x,y1)
title(ax1,'Plot 1')
ax1.FontSize = 14;
ax1.XColor = 'red';

% Bottom plot
ax2 = nexttile;
scatter(ax2,x,y2)
title(ax2,'Plot 2')
grid(ax2,'on')

 Combine Multiple Plots

9-27

Control Spacing Around the Tiles

You can control the spacing around the tiles in a layout by specifying the Padding and TileSpacing
properties. For example, display four plots in a 2-by-2 layout.

x = linspace(0,30);
y1 = sin(x);
y2 = sin(x/2);
y3 = sin(x/3);
y4 = sin(x/4);

% Create plots
t = tiledlayout(2,2);
nexttile
plot(x,y1)
nexttile
plot(x,y2)
nexttile
plot(x,y3)
nexttile
plot(x,y4)

9 Axes Appearance

9-28

Reduce the spacing around the perimeter of the layout and around each tile by setting the Padding
and TileSpacing properties to 'compact'.

t.Padding = 'compact';
t.TileSpacing = 'compact';

 Combine Multiple Plots

9-29

Display Shared Title and Axis Labels

You can display a shared title and shared axis labels in a layout. Create a 2-by-1 layout t. Then
display a line plot and a stem plot. Synchronize the x-axis limits by calling the linkaxes function.

x1 = linspace(0,20,100);
y1 = sin(x1);
x2 = 3:17;
y2 = rand(1,15);

% Create plots.
t = tiledlayout(2,1);
ax1 = nexttile;
plot(ax1,x1,y1)
ax2 = nexttile;
stem(ax2,x2,y2)

% Link the axes
linkaxes([ax1,ax2],'x');

9 Axes Appearance

9-30

Add a shared title and shared axis labels by passing t to the title, xlabel, and ylabel functions.
Move the plots closer together by removing the x-axis tick labels from the top plot and setting the
TileSpacing property of t to 'compact'.

% Add shared title and axis labels
title(t,'My Title')
xlabel(t,'x-values')
ylabel(t,'y-values')

% Move plots closer together
xticklabels(ax1,{})
t.TileSpacing = 'compact';

 Combine Multiple Plots

9-31

See Also
Functions
tiledlayout | nexttile | title | hold

Related Examples
• “Create Chart with Two y-Axes” on page 9-44
• “Specify Axis Tick Values and Labels” on page 9-9

9 Axes Appearance

9-32

Customized Presentations and Special Effects with Tiled Chart
Layouts

A tiled chart layout lets you control the placement of elements in a visualization and create special
effects. This topic covers four examples:

• “Stacked Colorbar and Plot with Shared Title” on page 9-33
• “Colorbar That Adjusts as Tiles Reflow” on page 9-34
• “Irregular Grid of Plots” on page 9-36
• “Main Plot with Adjacent Smaller Plots” on page 9-38
• “Region-of-Interest Plot” on page 9-40

Stacked Colorbar and Plot with Shared Title

Tiled chart layouts have several features for presenting multiple elements together under a shared
title. In this case, stack a colorbar on top of a plot under a shared title.

Create a 1-by-1 tiled chart layout. Then display a contour plot of the peaks data set.

figure
t = tiledlayout(1,1);
nexttile
contourf(peaks)

 Customized Presentations and Special Effects with Tiled Chart Layouts

9-33

Create a colorbar, and specify the 'northoutside' location. Then add a shared title by passing the
layout object, t, to the title function.

cb = colorbar('Location','northoutside');
title(t,'Contours of Peaks')

Colorbar That Adjusts as Tiles Reflow

Since R2022b

Tiled chart layouts have a GridSizeChangedFcn callback, which you can use to execute code when
the size of the grid changes. Typically, you define this callback for layouts that have the "flow" tile
arrangement.

For example, define a callback function in a program file called updateColorbar.m. The function
moves a colorbar between the south and east tiles of a layout depending on whether the number of
rows is greater than the number of columns in the layout's grid. The event argument provides the
current grid size.

function updateColorbar(tcl,event)
 cb = findobj(tcl,Type="Colorbar");
 if isscalar(cb)
 if event.NewGridSize(1) > event.NewGridSize(2)

9 Axes Appearance

9-34

 cb.Layout.Tile = "south";
 else
 cb.Layout.Tile = "east";
 end
 end
end

In the Command Window, create a tiled chart layout with the "flow" tile arrangement, and set the
GridSizeChangedFcn property to the updateColorbar function. Create a for loop that adds
seven plots to the layout. Then add a colorbar to the east tile.

f = figure;
tcl = tiledlayout(f,"flow",TileSpacing="tight", ...
 GridSizeChangedFcn=@updateColorbar);

for i = 1:7
 nexttile;
 pcolor(rand(20))
end

cb = colorbar;
cb.Layout.Tile = "east";

Change the size of the figure so that the tiles reflow. The colorbar moves to the south tile.

f.Position(3:4) = [400 525];

 Customized Presentations and Special Effects with Tiled Chart Layouts

9-35

Irregular Grid of Plots

Tiled chart layouts can be nested. This is useful for varying the arrangement of the tiles in a layout. In
this case, create two columns that each have a different number of tiles.

Create a 1-by-2 tiled layout called t1. Then create two nested layouts, t2 and t3, where t2 is in the
first tile of t1, and t3 is in the second tile. Then display two contour plots in t2, and add a title above
the plots.

figure
t1 = tiledlayout(1,2,'TileSpacing','Compact');
t2 = tiledlayout(t1,'flow','TileSpacing','Compact');
t3 = tiledlayout(t1,'flow','TileSpacing','Compact');
t3.Layout.Tile = 2;

% Add two contour plots to left side
[X,Y,Z] = peaks;
nexttile(t2);

9 Axes Appearance

9-36

contourf(X,Y,Z)
nexttile(t2)
contourf(X,Y,Z,10)
title(t2,"Contours of Peaks")

Display three line plots within t3, and add a title.

nexttile(t3)
plot(Z(15,:))
nexttile(t3)
plot(Z(25,:))
nexttile(t3)
plot(Z(35,:))
title(t3,"Y = -1.25, 0, and 1.25")

 Customized Presentations and Special Effects with Tiled Chart Layouts

9-37

Main Plot with Adjacent Smaller Plots

A tiled chart layout consists of a grid of tiles surrounded by four outer tiles. You can place legends,
colorbars, additional axes, or even a nested layout into any of these tiles. In this case, create a main
plot in the center, and use one of the outer tiles to display a set of supplemental plots.

First, create a matrix of sine waves and plot them together in a 1-by-1 tiled chart layout.

x = (0:0.1:10)';
y = sin([x x+1 x+2 x+3 x+4 x+5]);
figure
t = tiledlayout(1,1);
nexttile
plot(x,y)

9 Axes Appearance

9-38

Plot the individual sine waves below the main plot. To do this, create a new layout called ts in the
south tile of layout t. When you create ts, specify the 'flow' tile arrangement so that the plots fill
the entire south tile at each iteration of the for loop.

ts = tiledlayout(t,'flow');
ts.Layout.Tile = 'south';
for i=1:5
 nexttile(ts);
 plot(x,y(:,i))
end

 Customized Presentations and Special Effects with Tiled Chart Layouts

9-39

Region-of-Interest Plot

A plot can span multiple tiles of a layout. You can use this feature to display a main plot with an
accompanying inset plot. In this case, the inset plot shows a zoomed-in view of a region of interest.

Create a 3-by-3 tiled chart layout, and create an axes that spans all of the tiles. Then display a scatter
plot in the axes.

figure
t = tiledlayout(3,3,'Padding','compact');
ax1 = nexttile(1,[3 3]);
x = randn(2000,1);
y = randn(2000,1);
scatter(ax1,x,y,1,'filled');

9 Axes Appearance

9-40

Next, create a rectangle that defines the region of interest in the scatter plot. Set properties on the
axes last, to ensure that those properties persist.

• Define the bounds of the rectangle. Define left and bottom as the left and bottom edges of the
rectangle. Specify left in x-axis units, and specify bottom in y-axis units. Similarly, define width
and height as the width and height of the rectangle, also in axis units.

• Display the rectangle. Call the hold function to preserve the contents of the axes, and then call
the rectangle function.

• Set properties on the axes. Set the font size to 10 points, set the x- and y-axis limits, and turn the
grid on.

% Define bounds of the rectangle
left = -0.5;
bottom = -0.7;
width = 0.4;
height = 0.4;

% Display the rectangle
hold(ax1,'on');
r = rectangle('Position',[left bottom width height], ...
 'EdgeColor','red','LineWidth',1.5);

% Set properties on the axes
ax1.FontSize = 10;
ax1.XLim = [-4.5 4.5];

 Customized Presentations and Special Effects with Tiled Chart Layouts

9-41

ax1.YLim = [-4.5 4.5];
grid(ax1,'on')

Display a smaller, zoomed-in plot with x- and y-axis limits that match the region of interest.

• Create the axes for the zoomed-in view. Call the axes function to create the axes. Move the axes
to the third tile by setting the Layout.Tile property. Then plot the entire set of x and y data.

• Adjust the axis limits to match the region of interest. Set the XLim and YLim properties of ax2 to
match the region of interest. Then remove the ticks from the plot box.

• Set other properties on the axes. Turn the axes box on, set the x- and y- axis colors to red, and
display a title.

% Create axes for zoomed-in view
ax2 = axes(t);
ax2.Layout.Tile = 3;
scatter(ax2,x,y,10,'filled');

% Adjust axis limits and remove ticks
ax2.XLim = [left left+width];
ax2.YLim = [bottom bottom+height];
ax2.XTick = [];
ax2.YTick = [];

% Set other properties on the axes
ax2.Box = 'on';
ax2.XAxis.Color = 'red';

9 Axes Appearance

9-42

ax2.YAxis.Color = 'red';
title(ax2,'100x Magnification','Color','red');

See Also
Functions
tiledlayout | colorbar | axes

Properties
Axes Properties

Related Examples
• “Combine Multiple Plots” on page 9-24

 Customized Presentations and Special Effects with Tiled Chart Layouts

9-43

Create Chart with Two y-Axes

This example shows how to create a chart with y-axes on the left and right sides using the yyaxis
function. It also shows how to label each axis, combine multiple plots, and clear the plots associated
with one or both of the sides.

Plot Data Against Left y-Axis

Create axes with a y-axis on the left and right sides. The yyaxis left command creates the axes
and activates the left side. Subsequent graphics functions, such as plot, target the active side. Plot
data against the left y-axis.

x = linspace(0,25);
y = sin(x/2);
yyaxis left
plot(x,y);

Plot Data Against Right y-Axis

Activate the right side using yyaxis right. Then plot a set of data against the right y-axis.

r = x.^2/2;
yyaxis right
plot(x,r);

9 Axes Appearance

9-44

Add Title and Axis Labels

Control which side of the axes is active using the yyaxis left and yyaxis right commands.
Then, add a title and axis labels.

yyaxis left
title('Plots with Different y-Scales')
xlabel('Values from 0 to 25')
ylabel('Left Side')

yyaxis right
ylabel('Right Side')

 Create Chart with Two y-Axes

9-45

Plot Additional Data Against Each Side

Add two more lines to the left side using the hold on command. Add an errorbar to the right side.
The new plots use the same color as the corresponding y-axis and cycle through the line style order.
The hold on command affects both the left and right sides.

hold on

yyaxis left
y2 = sin(x/3);
plot(x,y2);
y3 = sin(x/4);
plot(x,y3);

yyaxis right
load count.dat;
m = mean(count,2);
e = std(count,1,2);
errorbar(m,e)

hold off

9 Axes Appearance

9-46

Clear One Side of Axes

Clear the data from the right side of the axes by first making it active, and then using the cla
command.

yyaxis right
cla

 Create Chart with Two y-Axes

9-47

Clear Axes and Remove Right y-Axis

Clear the entire axes and remove the right y-axis using cla reset.

cla reset

9 Axes Appearance

9-48

Now when you create a plot, it only has one y-axis. For example, plot three lines against the single y-
axis.

xx = linspace(0,25);
yy1 = sin(xx/4);
yy2 = sin(xx/5);
yy3 = sin(xx/6);
plot(xx,yy1,xx,yy2,xx,yy3)

 Create Chart with Two y-Axes

9-49

Add Second y-Axis to Existing Chart

Add a second y-axis to an existing chart using yyaxis. The existing plots and the left y-axis do not
change colors. The right y-axis uses the next color in the axes color order. New plots added to the
axes use the same color as the corresponding y-axis.

yyaxis right
rr1 = exp(xx/6);
rr2 = exp(xx/8);
plot(xx,rr1,xx,rr2)

9 Axes Appearance

9-50

See Also
Functions
yyaxis | ylabel | xlabel | title | hold | cla | plot

Related Examples
• “Modify Properties of Charts with Two y-Axes” on page 9-52
• “Combine Multiple Plots” on page 9-24

 Create Chart with Two y-Axes

9-51

Modify Properties of Charts with Two y-Axes
In this section...
“Change Axes Properties” on page 9-52
“Change Ruler Properties” on page 9-54
“Specify Colors Using Default Color Order” on page 9-56

The yyaxis function creates an Axes object with a y-axis on the left and right sides. Axes properties
related to the y-axis have two values. However, MATLAB gives access only to the value for the active
side. For example, if the left side is active, then the YDir property of the Axes object contains the
direction for the left y-axis. Similarly, if the right side is active, then the YDir property contains the
direction for the right y-axis. An exception is that the YAxis property contains an array of two ruler
objects (one for each y-axis).

You can change the appearance and behavior of a particular y-axis in either of these ways:

• Set the active side, and then change property values for the Axes object.
• Access the ruler objects through the YAxis property of the Axes object, and then change

property values for the ruler object.

Change Axes Properties

Modify properties of a chart with two y-axes by setting Axes properties.

Create a chart with two y-axes and plot data.

x = [1 2 3];
y1 = [2 6 4; 3 5 4; 5 7 8];
y2 = 100*[5 5 3; 3 4 7; 5 6 3];
figure
yyaxis left
plot(x,y1)
yyaxis right
plot(x,y2)

9 Axes Appearance

9-52

Reverse the direction of increasing values along each y-axis. Use yyaxis left to activate the left
side and set the direction for the left y-axis. Similarly, use yyaxis right to activate the right side.
Then, set the direction for the right y-axis.

ax = gca;
yyaxis left
ax.YDir = 'reverse';
yyaxis right
ax.YDir = 'reverse';

 Modify Properties of Charts with Two y-Axes

9-53

Change Ruler Properties

Modify properties of a chart with two y-axes by setting ruler properties.

Create a chart with two y-axes and plot data.

x = [1 2 3];
y1 = [2 6 4; 3 5 4; 5 7 8];
y2 = 100*[5 5 3; 3 4 7; 5 6 3];
figure
yyaxis left
plot(x,y1)
yyaxis right
plot(x,y2)

9 Axes Appearance

9-54

Reverse the direction of increasing values along each y-axis by setting properties of the ruler object
associated with each axis. Use ax.YAxis(1) to refer to the ruler for the left side and ax.YAxis(2)
to refer to the ruler for the right side.

ax = gca;
ax.YAxis(1).Direction = 'reverse';
ax.YAxis(2).Direction = 'reverse';

 Modify Properties of Charts with Two y-Axes

9-55

Specify Colors Using Default Color Order

Specify the colors for a chart with two y-axes by changing the default axes color order.

Create a figure. Define two RGB color values, one for the left side and one for the right side. Change
the default axes color order to these two colors before creating the axes. Set the default value at the
figure level so that the new colors affect only axes that are children of the figure fig. The new colors
do not affect axes in other figures. Then create the chart.

fig = figure;
left_color = [.5 .5 0];
right_color = [0 .5 .5];
set(fig,'defaultAxesColorOrder',[left_color; right_color]);

y = [1 2 3; 4 5 6];
yyaxis left
plot(y)

z = [6 5 4; 3 2 1];
yyaxis right
plot(z)

9 Axes Appearance

9-56

See Also
Functions
yyaxis | plot

Properties
Axes | Numeric Ruler

Related Examples
• “Create Chart with Two y-Axes” on page 9-44
• “Default Property Values” on page 17-19

 Modify Properties of Charts with Two y-Axes

9-57

Display Data with Multiple Scales and Axes Limits
You can use a variety of techniques to visualize data with multiple scales and axis limits. For example,
you can use the yyaxis function to create plots with two y-axes. To create plots with multiple x- and
y-axes, multiple colorbars, or to create a plot with a discontinuous axis that is broken into intervals,
use the tiledlayout function.

Display Data with Two y-Axes

Use the yyaxis function to create a plot with two y-axes. For example, you can use two y-axes to plot
two lines on different scales.

Create an axes object, and activate the left y-axis by calling yyaxis left. Then plot a sine wave.

figure
yyaxis left
x = linspace(0,10);
y = sin(3*x);
plot(x,y)

Activate the right y-axis by calling yyaxis right. Then plot an amplified sine wave.

yyaxis right
y2 = sin(3*x).*exp(0.5*x);
plot(x,y2)

9 Axes Appearance

9-58

Display Data with Multiple x-Axes and y-Axes

Since R2019b

To plot two sets of data with separate x- and y-axes, create two separate axes objects in a tiled chart
layout. Within one of the axes objects, move the x-axis to the top of the plot box, and move the y-axis
to the right side of the plot box.

For example, you can create two plots that have different x- and y-axis limits.

First, create two sets of x- and y-coordinates.

x1 = 0:0.1:40;
y1 = 4.*cos(x1)./(x1+2);
x2 = 1:0.2:20;
y2 = x2.^2./x2.^3;

Create a tiled chart layout and an axes object. Then plot into the axes:

• Create a 1-by-1 tiled chart layout t.
• Create an axes object ax1 by calling the axes function and specifying t as the parent object.
• Plot x1 and y1 as a red line, and specify ax1 as the target axes.

 Display Data with Multiple Scales and Axes Limits

9-59

• Change the color of the x-axis and y-axis to match the plotted line. Setting properties on the axes
after plotting ensures that the settings persist.

t = tiledlayout(1,1);
ax1 = axes(t);
plot(ax1,x1,y1,'-r')
ax1.XColor = 'r';
ax1.YColor = 'r';

Create a second axes object and plot the second set of data in black rather than red. Then, set
properties on the second axes object to move the x-axis and y-axis, and to ensure that neither plot
obscures the other.

• Create an axes object ax2 by calling the axes function and specifying t as the parent object.
• Plot x2 and y2 as a black line, and specify ax2 as the target axes.
• Move the x-axis to the top, and move the y-axis to the right.
• Set the color of the axes object to 'none' so that the underlying plot is visible.
• Turn off the plot boxes to prevent the box edges from obscuring the x- and y-axes.

ax2 = axes(t);
plot(ax2,x2,y2,'-k')
ax2.XAxisLocation = 'top';
ax2.YAxisLocation = 'right';
ax2.Color = 'none';
ax1.Box = 'off';
ax2.Box = 'off';

9 Axes Appearance

9-60

Plot Data on Discontinuous x-Axis

Since R2019b

You can use a tiled chart layout to give the appearance of a plot that is broken into intervals along
one axis. For example, you might want to exclude one section of the x-axis to focus on other regions
of interest.

Create coordinate vectors x and y.

x = 0:0.1:60;
y = 4.*cos(x)./(x+2);

Create a tiled chart layout containing two tiles, and place an axes object across both tiles. In the final
presentation, this axes object will appear in the background, behind two other axes objects. A section
of its x-axis will be visible to give the appearance of one long x-axis.

• Create a 1-by-2 tiled chart layout t, and specify compact tile spacing. Setting the tile spacing
allows you to control the size of the gap between the x-axis intervals.

• Create the background axes bgAx by calling the axes function and specifying t as the parent
object. Specify name-value arguments to remove all the ticks and turn off the plot box.

• Span the background axes across both tiles by setting the Layout.TileSpan property of bgAx to
[1 2].

 Display Data with Multiple Scales and Axes Limits

9-61

figure
t = tiledlayout(1,2,'TileSpacing','compact');
bgAx = axes(t,'XTick',[],'YTick',[],'Box','off');
bgAx.Layout.TileSpan = [1 2];

Create an axes object in front of bgAx in the first tile. Plot x and y, and set the x-axis limits to the first
interval:

• Create ax1 by calling the axes function and specifying t as the parent object. By default, the axes
goes into the first tile.

• Plot x and y into ax1.
• Call the xline function to display a dotted vertical line at the upper limit of the first interval.
• Set the x-axis limits to the first interval, [0 15].
• Add an axis label to identify the first interval.

ax1 = axes(t);
plot(ax1,x,y)
xline(ax1,15,':');
ax1.Box = 'off';
xlim(ax1,[0 15])
xlabel(ax1, 'First Interval')

9 Axes Appearance

9-62

Repeat the process to create another axes object and plot for the second interval. The axes appears in
the first tile by default. Move it to the second tile by setting the Layout.Tile property of the axes to
2. Then, link the axes so that the limits of both y-axes match.

% Create second plot
ax2 = axes(t);
ax2.Layout.Tile = 2;
plot(ax2,x,y)
xline(ax2,45,':');
ax2.YAxis.Visible = 'off';
ax2.Box = 'off';
xlim(ax2,[45 60])
xlabel(ax2,'Second Interval')

% Link the axes
linkaxes([ax1 ax2], 'y')

 Display Data with Multiple Scales and Axes Limits

9-63

To add a title, pass the tiled chart layout to the title function.

title(t,'Attenuated Cosine Function')

9 Axes Appearance

9-64

Display Two Sets of Data with Separate Colorbars

Since R2020b

An axes object can accommodate only one colorbar. To create a visualization with multiple colorbars,
stack multiple axes objects in a tiled chart layout. Make only one of the axes visible, but display a
colorbar next to each of them in an outer tile of the layout.

Create the coordinate vectors, size data, and color data for two bubble charts.

x = 1:15;
n = 70 * randn(1,15) + 50;
y1 = n + x.^2;
y2 = n - linspace(1,225,15);
sz1 = rand(1,15);
sz2 = rand(1,15);
c = linspace(1,10,15);

Stack two axes objects, each containing a bubble chart, in a tiled chart layout.

• Create a 1-by-1 tiled chart layout t.
• Create axes object ax1 and a bubble chart with the winter colormap.
• Create axes object ax2 and a bubble chart with the autumn colormap. Make this axes object

invisible by setting the Visible property to 'off'.

 Display Data with Multiple Scales and Axes Limits

9-65

• Link the axes objects to keep them in sync. In this case, you can pass the children of t to the
linkaxes function. Alternatively, you can pass a vector of individual axes objects to the function.

% create first bubble chart with winter colormap
t = tiledlayout(1,1);
ax1 = axes(t);
bubblechart(ax1,x,y1,sz1,c)
colormap(ax1,'winter')

% create second bubble chart with autumn colormap
ax2 = axes(t);
bubblechart(ax2,x,y2,sz2,c)
colormap(ax2,'autumn')
ax2.Visible = 'off';

% link the limits of axes
linkaxes(t.Children)

Display a colorbar with a label for each axes object in the east tile of the layout. The layout arranges
the colorbars and keeps them aligned.

cb1 = colorbar(ax1);
cb1.Layout.Tile = 'east';
cb1.Label.String = 'Time (s)';

cb2 = colorbar(ax2);
cb2.Layout.Tile = 'east';
cb2.Label.String = 'Concentration (M)';

9 Axes Appearance

9-66

See Also
Functions
tiledlayout | yyaxis | axes

Related Examples
• “Combine Multiple Plots” on page 9-24
• “Creating Colorbars” on page 10-2

 Display Data with Multiple Scales and Axes Limits

9-67

Control Ratio of Axis Lengths and Data Unit Lengths
In this section...
“Plot Box Aspect Ratio” on page 9-68
“Data Aspect Ratio” on page 9-71
“Revert Back to Default Ratios” on page 9-74

You can control the relative lengths of the x-axis, y-axis, and z-axis (plot box aspect ratio). You also
can control the relative lengths of one data unit along each axis (data aspect ratio).

Plot Box Aspect Ratio

The plot box aspect ratio is the relative lengths of the x-axis, y-axis, and z-axis. By default, the plot
box aspect ratio is based on the size of the figure. You can change the aspect ratio using the
pbaspect function. Set the ratio as a three-element vector of positive values that represent the
relative axis lengths.

For example, plot an elongated circle. Then set the plot box aspect ratio so that the x-axis is twice the
length of the y-axis and z-axis (not shown).

t = linspace(0,2*pi);
plot(sin(t),2*cos(t))
grid on
pbaspect([2 1 1])

9 Axes Appearance

9-68

Show the axes in a 3-D view to see the z-axis.

view(3)

 Control Ratio of Axis Lengths and Data Unit Lengths

9-69

For square axes, use [1 1 1]. This value is similar to using the axis square command.

t = linspace(0,2*pi);
plot(sin(t),2*cos(t))
grid on
pbaspect([1 1 1])

9 Axes Appearance

9-70

Data Aspect Ratio

The data aspect ratio is the relative length of the data units along the x-axis, y-axis, and z-axis. You
can change the aspect ratio using the daspect function. Set the ratio as a three-element vector of
positive values that represent the relative lengths of data units along each axis.

For example, set the ratio so that the length from 0 to 1 along the x-axis is equal to the length from 0
to 0.5 along the y-axis and 0 to 2 along the z-axis (not shown).

t = linspace(0,2*pi);
plot(sin(t),2*cos(t))
grid on
daspect([1 0.5 2])

 Control Ratio of Axis Lengths and Data Unit Lengths

9-71

Show the axes in a 3-D view to see the z-axis.

view(3)

9 Axes Appearance

9-72

For equal data units in all directions, use [1 1 1]. This value is similar to using the axis equal
command. One data unit in the x direction is the same length as one data unit in the y and z
directions.

t = linspace(0,2*pi);
plot(sin(t),2*cos(t))
grid on
daspect([1 1 1])

 Control Ratio of Axis Lengths and Data Unit Lengths

9-73

Revert Back to Default Ratios

Change the data aspect ratio. Then revert back to the default plot box and data aspect ratios using
the axis normal command.

t = linspace(0,2*pi);
plot(sin(t),2*cos(t))
grid on
daspect([1 1 1])
axis normal

9 Axes Appearance

9-74

See Also
Functions
pbaspect | daspect | axis

Related Examples
• “Specify Axis Limits” on page 9-2
• “Control Axes Layout” on page 9-76

 Control Ratio of Axis Lengths and Data Unit Lengths

9-75

Control Axes Layout
In this section...
“Position-Related Properties and Functions” on page 9-76
“Position and Margin Boundaries” on page 9-77
“Position for Square or Constrained Aspect Ratios” on page 9-78
“Controlling Automatic Resize Behavior” on page 9-79
“Stretch-to-Fill Behavior” on page 9-80

Position-Related Properties and Functions
There are several properties and functions for getting and setting the size and location of the axes.
This table provides a summary.

Function or Property Description
OuterPosition
property

Use this property to query or change the outer boundary of the axes,
including the title, labels, and a margin. To change the outer boundary,
specify this property as a vector of the form [left bottom width
height]. The left and bottom values indicate the distance from the
lower-left corner of the figure to the lower-left corner of the outer
boundary. The width and height values indicate the outer boundary
dimensions.

Position property Use this property to query or change the plotting area, which is typically
bounded by the plot box. This area excludes the title, labels, and a margin
around the title and labels. To change the size of the plotting area, specify
this property as a vector of the form [left bottom width height].

tightPosition
function

Since R2022b

Use this function to query the plotting area, which is typically bounded by
the plot box. The function often returns more accurate size and location
information than the Position property does for axes that have
constrained aspect ratios (such as square axes, polar axes, or axes that
contain images).

TightInset property Use this property to query the margins around the plot box for titles, tick
labels, and axis labels. When you add axis labels and a title, MATLAB
updates this property to accommodate the text. The size of the boundary
defined by the Position and TightInset properties includes all the text
labels.

PositionConstraint
property

Since R2020a

Use this property to query or control whether the plotting area (inside the
axes) or the outer boundary of the axes is preserved when adding titles or
labels. To change which aspect of the axes is preserved, specify this
property as "innerposition" or "outerposition".

Units property Use this property to query or change the units of the axes position values.
The value must be set to "normalized" (the default) to enable automatic
axes resizing.

9 Axes Appearance

9-76

Function or Property Description
axis function Use this function to make adjustments to the axes limits or aspect ratio

without having to perform calculations or set specific properties. For
example:

• axis image — Change the size of the plot box to fit an image.
• axis padded — Add a margin of padding between your visualization

(for example, a plotted line) and the plot box.

Position and Margin Boundaries
This figure shows a 2-D view of the axes areas defined by the OuterPosition values (red), the
Position values (blue), and the Position expanded by the TightInset values (magenta).

This figure shows a 3-D view of the axes areas defined by the OuterPosition values (red), the
Position values (blue), and the Position expanded by the TightInset values (magenta).

 Control Axes Layout

9-77

Position for Square or Constrained Aspect Ratios
Since R2022b

If your axes has a constrained aspect ratio, for example, if you are plotting an image, the Position
property and tightPosition function return different results. Use either of them depending on the
type of presentation you want to create.

For example, display an image. Use the axis function to preserve the aspect ratio of the image.

figure
C = imread("ngc6543a.jpg");
ax = axes;
image(C)
axis image

Get the position vector by calling the tightPosition function. Use the vector to draw a red
rectangle around the image that is currently displayed in the axes.

tpos = tightPosition(ax);
annotation("rectangle",tpos,Color="red",LineWidth=2)

Get another position vector by querying the Position property of the axes. Use the vector to draw a
blue rectangle that defines the plotting area for a similarly sized image, but with the default aspect
ratio. The values in this vector might be useful for querying the overall image area when displaying a
succession of multiple images that have different aspect ratios.

pos = ax.Position;
annotation("rectangle",pos,Color="blue",LineWidth=2)

9 Axes Appearance

9-78

Controlling Automatic Resize Behavior
Some scenarios can trigger the Axes object to automatically resize. For example, interactively
resizing the figure or adding a title or axis labels activates automatic resizing. Sometimes, the new
axes size cannot satisfy both the Position and OuterPosition values, so the
PositionConstraint property indicates which values to preserve.

Specify the PositionConstraint property as one of these values:

• "outerposition" — Preserve the OuterPosition value. Use this option when you do not want
the axes or any of the surrounding text to extend beyond a certain outer boundary. MATLAB
adjusts the size of the inner area of the axes (where plots appear) to try to fit the contents within
the outer boundary.

• "innerposition" — Preserve the InnerPosition value. Use this option when you want the
inner area of the axes to remain a certain size within the figure. This option sometimes causes text
to run off the figure.

use the ActivePositionProperty and the values "outerposition" or "position".

Usually, leaving the PositionConstraint property set to "outerposition" is preferable.
However, an overly long axes title or labels can shrink the inner area of your axes to a size that is
hard to read. In such a case, keeping the inner axes to a specific size can be preferable, even if the
surrounding text runs off the figure.

For example, create a figure with two axes and specify the same width and height for each axes
position. Set the PositionConstraint property to "outerposition" for the upper axes and to
"innerposition" for the lower axes. Notice that in the upper axes, the inner area shrinks to

 Control Axes Layout

9-79

accommodate the text, but the text does not run outside the figure. In the lower axes, the size of the
inner area is preserved, but some of the text is cut off.

figure;
ax1 = axes("Position",[0.13 0.58 0.77 0.34]);
ax1.PositionConstraint = "outerposition";
plot(ax1,1:10)
title(ax1,"Preserve OuterPosition")
yticklabels(ax1,["My incredibly descriptive, excessively wordy, and overly long label",...
 "label 2","label 3"])

ax2 = axes("Position",[0.13 0.11 0.77 0.34]);
ax2.PositionConstraint = "innerposition";
plot(ax2,1:10)
title(ax2,"Preserve Position")
yticklabels(ax2,["My incredibly descriptive, excessively wordy, and overly long label",...
 "label 2","label 3"])

Stretch-to-Fill Behavior
By default, MATLAB stretches the axes to fill the available space. This “stretch-to-fill” behavior can
cause some distortion. The axes might not exactly match the data aspect ratio, plot box aspect ratio,
and camera-view angle values stored in the DataAspectRatio, PlotBoxAspectRatio, and
CameraViewAngle properties. The “stretch-to-fill” behavior is enabled when the
DataAspectRatioMode, PlotBoxAspectRatioMode, and CameraViewAngleMode properties of
the Axes object are set to "auto".

If you specify the data aspect ratio, plot box aspect ratio, or camera-view angle, then the "stretch-to-
fill" behavior is disabled. When the "stretch-to-fill" behavior is disabled, MATLAB makes the axes as
large as possible within the available space and strictly adheres to the property values so that there is
no distortion.

For example, this figure shows the same plot with and without the "stretch-to-fill" behavior enabled.
In both versions, the data aspect ratio, plot box aspect ratio, and camera-view angle values are the
same. However, in the left plot, the stretching introduces some distortion.

9 Axes Appearance

9-80

Stretch-to-fill enabled (some distortion) Stretch-to-fill disabled (no distortion)

See Also
Functions
axes | tiledlayout | title | daspect | pbaspect

Properties
Axes

Related Examples
• “Saving and Copying Plots with Minimal White Space” on page 16-25

 Control Axes Layout

9-81

Manipulating Axes Aspect Ratio

In this section...
“Axes Aspect Ratio Properties” on page 9-82
“Default Aspect Ratio Selection” on page 9-83
“Maintaining the Axes Proportions with Figure Resize” on page 9-85
“Aspect Ratio Properties” on page 9-87
“Displaying Real Objects” on page 9-91

Axes Aspect Ratio Properties
The axis command works by setting various axes object properties. You can set these properties
directly to achieve precisely the effect you want.

Property Description
DataAspectRatio Sets the relative scaling of the individual axis data values. Set

DataAspectRatio to [1 1 1] to display real-world objects in
correct proportions. Specifying a value for DataAspectRatio
overrides stretch-to-fill behavior.

Set with daspect
DataAspectRatioMode In auto, MATLAB software selects axis scales that provide the

highest resolution in the space available.
PlotBoxAspectRatio Sets the proportions of the axes plot box (set box to on to see the

box). Specifying a value for PlotBoxAspectRatio overrides
stretch-to-fill behavior.

Set with pbaspect
PlotBoxAspectRatioMode In auto, MATLAB sets the PlotBoxAspectRatio to [1 1 1]

unless you explicitly set the DataAspectRatio and/or the axis
limits.

Position Defines the location and size of the axes with a four-element vector:
[left offset, bottom offset, width, height].

XLim, YLim, ZLim Sets the minimum and maximum limits of the respective axes.
XLimMode , YLimMode , ZLimMode In auto, MATLAB selects the axis limits.

When the mode properties are set to auto, MATLAB automatically determines values for all of these
properties and then stretches the axes to fit the figure shape. You can override any property's
automatic operation by specifying a value for the property or setting its mode property to manual.

The value you select for a particular property depends primarily on what type of data you want to
display. Much of the data visualized with MATLAB is either

• Numerical data displayed as line, mesh plots, or other specialized plot
• Representations of real-world objects (e.g., a motor vehicle or a section of the earth's topography)

9 Axes Appearance

9-82

In the first case, it is generally desirable to select axis limits that provide good resolution in each axis
direction and to fill the available space. Real-world objects, on the other hand, need to be represented
accurately in proportion, regardless of the angle of view.

The MATLAB default property values are designed to

• Select axis limits to span the range of the data (when XLimMode, YLimMode, and ZLimMode are
set to auto).

• Provide the highest resolution in the available space by setting the scale of each axis
independently (when DataAspectRatioMode and the PlotBoxAspectRatioMode are set to
auto).

• Draw axes that fit the position rectangle by adjusting the CameraViewAngle and then stretch-to-
fill the axes if necessary.

Default Aspect Ratio Selection

The axes Position property specifies the location and dimensions of the axes within the figure. The
third and fourth elements of the Position vector (width and height) define a rectangle in which
MATLAB draws the axes. MATLAB fits the axes to this rectangle.

The default value for the axes Units property is normalized to the parent figure dimensions. This
means the shape of the figure window determines the shape of the position rectangle. As you change
the size of the figure window, MATLAB reshapes the position rectangle to fit it.

sphere
set(gcf,'Color',[0.90 0.90 0.90])
set(gca,'BoxStyle','full','Box','on')

 Manipulating Axes Aspect Ratio

9-83

Changing the size and shape of the figure causes a change in the size and shape of the axes. The axes
might select new axis tick mark locations as well.

f = gcf;
f.Position(3) = f.Position(3) * 0.67;

9 Axes Appearance

9-84

Reshaping the axes to fit into the figure window can change the aspect ratio of the graph. MATLAB
fits the axes to fill the position rectangle and in the process can distort the shape. This is generally
desirable for graphs of numeric data, but not for displaying objects realistically.

Maintaining the Axes Proportions with Figure Resize

To maintain a particular shape, you can specify the size of the axes in absolute units such as inches,
which are independent of the figure window size. However, this is not a good approach if you are
writing a MATLAB program that you want to work with a figure window of any size. A better
approach is to specify the aspect ratio of the axes and override automatic stretch-to-fill.

In cases where you want a specific aspect ratio, you can override stretching by specifying a value for
these axes properties:

• DataAspectRatio or DataAspectRatioMode
• PlotBoxAspectRatio or PlotBoxAspectRatioMode
• CameraViewAngle or CameraViewAngleMode

The first two sets of properties affect the aspect ratio directly. Setting either of the mode properties
to manual simply disables stretch-to-fill while maintaining all current property values. In this case,
MATLAB enlarges the axes until one dimension of the position rectangle constrains it. For example,
set the DataAspectRatio to [1 1 1]. Also set the figure's color to see the relationship between the
figure and the axes.

 Manipulating Axes Aspect Ratio

9-85

sphere
daspect([1 1 1])
set(gca,'BoxStyle','full','Box','on')
set(gcf,'Color',[0.90 0.90 0.90])

Changing the size and shape of the figure does not change the aspect ratio of the axes.

f = gcf;
f.Position(3) = f.Position(3) * 0.67;

9 Axes Appearance

9-86

Setting the CameraViewAngle property disables stretch-to-fill, and also prevents MATLAB from
readjusting the size of the axes if you change the view.

Aspect Ratio Properties

It is important to understand how properties interact with each other, in order to obtain the results
you want. The DataAspectRatio, PlotBoxAspectRatio, and the x-, y-, and z-axis limits (XLim,
YLim, and ZLim properties) all place constraints on the shape of the axes.

Data Aspect Ratio

The DataAspectRatio property controls the ratio of the axis scales. For example, to display a
surface plot of a mathematical expression MATLAB selects a data aspect ratio that emphasizes the
function’s values:

[X,Y] = meshgrid((-2:.15:2),(-4:.3:4));
Z = X.*exp(-X.^2 - Y.^2);
surf(X,Y,Z)
set(gca,'BoxStyle','full','Box','on')

 Manipulating Axes Aspect Ratio

9-87

The daspect function returns the actual value of the DataAspectRatio property.

daspect

ans = 1×3

 4 8 1

This means that four units in length along the x-axis cover the same data values as eight units in
length along the y-axis and one unit in length along the z-axis. The axes fill the plot box, which has an
aspect ratio of [1 1 1] by default.

If you want to view the surface plot so that the relative magnitudes along each axis are equal with
respect to each other, you can set the DataAspectRatio to [1 1 1].

daspect([1 1 1])

9 Axes Appearance

9-88

Setting the value of the DataAspectRatio property also sets the DataAspectRatioMode to
manual and overrides stretch-to-fill so the specified aspect ratio is achieved.

Plot Box Aspect Ratio

Looking at the value of the PlotBoxAspectRatio for the graph in the previous section shows that it
has now taken on the former value of the DataAspectRatio. The pbaspect function to returns the
value of the PlotBoxAspectRatio:

pbaspect

ans = 1×3

 4 8 1

Notice that MATLAB rescaled the plot box to accommodate the graph using the specified
DataAspectRatio.

The PlotBoxAspectRatio property controls the shape of the axes plot box. By default, MATLAB
sets this property to [1 1 1] and adjusts the DataAspectRatio property so that graphs fill the plot
box or until reaching a constraint.

When you set the value of the DataAspectRatio, and thereby prevent it from changing, MATLAB
varies the PlotBoxAspectRatio instead.

 Manipulating Axes Aspect Ratio

9-89

If you specify both the DataAspectRatio and the PlotBoxAspectRatio, MATLAB is forced to
change the axis limits to obey the two constraints you have already defined.

Continuing with the mesh example, if you set both properties, MATLAB changes the axis limits to
satisfy the two constraints placed on the axes.

daspect([1 1 1])
pbaspect([1 1 1])

Adjusting Axis Limits

The axes also has properties for setting the x-, y-, and z-axis limits. However, specifying the axis limits
with the PlotBoxAspectRatio and DataAspectRatio properties overconstrains the axes. For
example, this command specifies axis limits that conflict with the PlotBoxAspectRatio value.

set(gca,'DataAspectRatio',[1 1 1],...
 'PlotBoxAspectRatio',[1 1 1],...
 'XLim',[-4 4],...
 'YLim',[-4 4],...
 'ZLim',[-1 1])

9 Axes Appearance

9-90

If you query the plot box aspect ratio, you can see that the PlotBoxAspectRatio value changed to
accommodate the axis limits.

pbaspect

ans = 1×3

 4 4 1

Displaying Real Objects

If you want to display an object so that it looks realistic, you need to change MATLAB defaults. For
example, this data defines a wedge-shaped patch object.

vert = [0 0 0; 0 1 0; 1 1 0; 1 0 0; 0 0 1; 0 1 1; 1 1 4; 1 0 4];
fac = [1 2 3 4; 2 6 7 3; 4 3 7 8; 1 5 8 4; 1 2 6 5; 5 6 7 8];
patch('Vertices',vert,'Faces',fac,...
 'FaceColor',[0.7 0.7 0.7],'EdgeColor','k')
view(3)

 Manipulating Axes Aspect Ratio

9-91

However, this axes distorts the actual shape of the solid object defined by the data. To display it in
correct proportions, set the DataAspectRatio. Setting this property makes the units equal in the x-,
y-, and z-directions and prevents the axes from being stretched to fill the position rectangle, revealing
the true shape of the object.

set(gca,'DataAspectRatio',[1 1 1])

9 Axes Appearance

9-92

 Manipulating Axes Aspect Ratio

9-93

Specify Plot Colors
MATLAB creates plots using a default set of colors. The default colors provide a clean and consistent
look across the different plots you create. You can customize the colors if you need to. Many plotting
functions have an input argument such as c or colorspec for customizing the color. The objects
returned by these functions typically have properties for controlling the color. The names of the
arguments and properties can vary, but the values they accept typically follow a common pattern.
Once you are familiar with the pattern, you can use it to modify a wide variety of plots.

The following examples use the bar and scatter functions to demonstrate the overall approach for
customizing colors. For a complete list of valid color values for a specific plotting function, refer to
the documentation for that function.

Types of Color Values
There are these types of color values:

• Color Name or Short Name — Specify the name of a color such as "red" or "green". Short
names specify a letter from a color name, such as "r" or "g".

• RGB Triplet — Create a custom color by specifying a three-element row vector whose elements
are the intensities of the red, green, and blue components of a color. The intensities must be in the
range [0,1]. For example, you can specify a shade of pink as [1 0.5 0.8].

Some function arguments that control color do not accept RGB triplets, but object properties that
control color typically do.

• Hexadecimal Color Code (Since R2019a) — Create a custom color by specifying a string or a
character vector that starts with a hash symbol (#) followed by three or six hexadecimal digits,
which can range from 0 to F. The values are not case sensitive. Thus, the color codes "#FF8800",
"#ff8800", "#F80", and "#f80" all specify the same shade of orange.

Some function arguments that control color do not accept hexadecimal color codes, but you can
specify a hexadecimal color code using a name-value argument that corresponds to an object
property. For example, scatter(x,y,sz,"MarkerFaceColor","#FF8800") sets the marker
color in a scatter plot to orange.

This table lists all of the valid color names and short names with the corresponding RGB triplets and
hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

"red" "r" [1 0 0] "#FF0000"
"green" "g" [0 1 0] "#00FF00"
"blue" "b" [0 0 1] "#0000FF"
"cyan" "c" [0 1 1] "#00FFFF"
"magenta" "m" [1 0 1] "#FF00FF"
"yellow" "y" [1 1 0] "#FFFF00"
"black" "k" [0 0 0] "#000000"
"white" "w" [1 1 1] "#FFFFFF"

9 Axes Appearance

9-94

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots. These colors do not have names associated with them.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD"
[0.8500 0.3250 0.0980] "#D95319"
[0.9290 0.6940 0.1250] "#EDB120"
[0.4940 0.1840 0.5560] "#7E2F8E"
[0.4660 0.6740 0.1880] "#77AC30"
[0.3010 0.7450 0.9330] "#4DBEEE"
[0.6350 0.0780 0.1840] "#A2142F"

Specify Color of a Bar Chart

Create a red bar chart by calling the bar function and specifying the optional color argument as
"red". Return the bar object as b, so you can customize other aspects of the chart later.

b = bar(1:10,"red");

Now, change the bar fill color and outline color to light blue by setting the FaceColor and
EdgeColor properties to the hexadecimal color code,"#80B3FF".

 Specify Plot Colors

9-95

Before R2019a, specify an RGB triplet instead of a hexadecimal color code. For example,
b.FaceColor = [0.5 0.7 1].

b.FaceColor = "#80B3FF";
b.EdgeColor = "#80B3FF";

Specify Marker Colors in a Scatter Plot

Create a scatter plot of random numbers. Specify the marker size as 75 points, and use name-value
arguments to specify the marker outline and fill colors. The MarkerEdgeColor property controls the
outline color, and the MarkerFaceColor controls the fill color.

x = rand(1,100);
y = rand(1,100);
scatter(x,y,75,"MarkerEdgeColor","b", ...
 "MarkerFaceColor",[0 0.7 0.7])

9 Axes Appearance

9-96

Specify Colors in a Series of Plots

There are two ways to create a series of plots:

• Call a plotting function multiple times and use the hold function to retain the contents of the
axes.

• Pass a matrix containing multiple data series to the plotting function. The plot function has
always accepted matrix inputs, and many other plotting functions also support matrix inputs.

To specify colors with either approach, call the desired plotting function with an output argument so
you can access the individual plot objects. Then set properties on the plot object you want to change.

For example, create a scatter plot with 100-point filled markers. Call the scatter function with an
output argument s1. Call the hold function to retain the contents of the axes, and then call the
scatter function two more times with output arguments s2 and s3. The variables s1, s2, and s3
are Scatter objects.

figure
x = 1:5;
s1 = scatter(x,[6 3 9 10 7],100,"filled");
hold on
s2 = scatter(x,[16 13 19 20 17],100,"filled");
s3 = scatter(x,[26 23 29 33 27],100,"filled");
hold off

 Specify Plot Colors

9-97

Change the color of the second Scatter object to a shade of purple.

s2.MarkerFaceColor = [0.7 0 1];

9 Axes Appearance

9-98

The scatter function also supports matrix inputs (since R2021a), so you can create the same plot by
passing a matrix and returning a vector of objects.

figure
x = 1:5;
y = [6 3 9 10 7; 16 13 19 20 17; 26 23 29 33 27];
s = scatter(x,y,100,"filled");

 Specify Plot Colors

9-99

To change the color of the second data series in this case, access the second Scatter object by
indexing into s.

s(2).MarkerFaceColor = [0.7 0 1];

9 Axes Appearance

9-100

See Also
Functions
scatter | bar | validatecolor

Properties
Scatter | Bar Properties

More About
• “Change Color Scheme Using a Colormap” on page 10-10
• “Control How Plotting Functions Select Colors and Line Styles” on page 9-111

 Specify Plot Colors

9-101

Specify Line and Marker Appearance in Plots
MATLAB creates plots using a default set of line styles, colors, and markers. These defaults provide a
clean and consistent look across the different plots you create. If you want, you can customize these
aspects of your plot. Many plotting functions have an input argument called linespec for
customizing. Also, the objects returned by these functions typically have properties for controlling
these aspects of your plot. The names of the arguments and properties can vary, but the values they
accept typically follow a common pattern. Once you are familiar with the pattern, you can use it to
modify a wide variety of plots.

The following examples use the plot function to demonstrate the overall approach for customizing
the appearance of lines. For a complete list of options for a specific plotting function, refer to the
documentation for that function.

Line Styles
Most line plots display a solid line by default, but you can customize the line with any of the line
styles in the following table. For example, create a line plot with a dashed line:

plot([0 1 2 3],'--')

Line Style Description Resulting Line
"-" Solid line

"--" Dashed line

":" Dotted line

"-." Dash-dotted line

Markers
Usually, you can specify a marker symbol in addition to the line style. The markers appear at the data
points in your chart. For example, create a line plot with a dashed line and circular markers:

plot([0 1 2 3],'--o')

Marker Description Resulting Marker
"o" Circle

"+" Plus sign

"*" Asterisk

"." Point

"x" Cross

"_" Horizontal line

9 Axes Appearance

9-102

Marker Description Resulting Marker
"|" Vertical line

"square" Square

"diamond" Diamond

"^" Upward-pointing triangle

"v" Downward-pointing triangle

">" Right-pointing triangle

"<" Left-pointing triangle

"pentagram" Pentagram

"hexagram" Hexagram

Specify Combinations of Colors, Line Styles, and Markers

Many plotting functions have a single argument for specifying the color, the line style, and the
marker. For example, the plot function has an optional linespec argument for specifying one or
more of these aspects. (Alternatively, you can set properties to modify the plot after creating it.)

Create a plot with a red dashed line and circular markers by specifying the linespec argument as
'--or'. For this combination, '--' corresponds to a dashed line, 'o' corresponds to circular
markers, and 'r' corresponds to red.

plot([1 2 3 4 5 6],[0 3 1 6 4 10],'--or')

 Specify Line and Marker Appearance in Plots

9-103

You do not need to specify all three aspects of the line. For example, if you specify only the marker,
the plot displays the markers with the default color and no line.

plot([1 2 3 4 5 6],[0 3 1 6 4 10],'o')

9 Axes Appearance

9-104

You can use the linespec argument to specify a named color, but to specify a custom color, set an
object property. For example, Line objects have a Color property.

Create a plot with a purple line that has circular markers. Specify only the line and marker symbols in
the linespec argument. Set the Color property separately as a name-value argument. Return the
Line object as p, so you can change other properties later.

p = plot([1 2 3 4 5 6],[0 3 1 6 4 10],'-o','Color',[0.5 0 0.8]);

 Specify Line and Marker Appearance in Plots

9-105

Next, change the color of the line to a shade of green by setting the Color property to the
hexadecimal color code '#00841a'. Then change the line style to dashed, and change the markers to
asterisks.

Before R2019a, specify the color as an RGB triplet instead of a hexadecimal color code. For example,
p.Color = [0 0.52 0.10].

p.Color = '#00841a';
p.LineStyle = '--';
p.Marker = '*';

9 Axes Appearance

9-106

Modify Line Width, Marker Fill, and Marker Outline

You can modify other aspects of lines by setting properties. For example, Line objects have a
LineWidth property for controlling the line's thickness. To create a thicker line, you can specify the
LineWidth as a name-value argument when you call the plot function. In this case, set the
LineWidth to 3. Return the Line object as p so you can set other properties later.

p = plot([1 2 3 4 5 6],[0 3 1 6 4 10],'-o','LineWidth',3);

 Specify Line and Marker Appearance in Plots

9-107

Fill the markers with a shade of orange by setting the MarkerFaceColor property on the Line
object. Then increase the marker size to 8 by setting the MarkerSize property.

p.MarkerFaceColor = [1 0.5 0];
p.MarkerSize = 8;

9 Axes Appearance

9-108

Change the outlines of the markers to match the fill color by setting the MarkerEdgeColor property.

p.MarkerEdgeColor = [1 0.5 0];

 Specify Line and Marker Appearance in Plots

9-109

See Also
Functions
plot

Properties
Chart Line

More About
• “Create Line Plot with Markers” on page 1-30
• “Control How Plotting Functions Select Colors and Line Styles” on page 9-111

9 Axes Appearance

9-110

Control How Plotting Functions Select Colors and Line Styles

In this section...
“How Automatic Assignment Works” on page 9-111
“Changing Color Schemes and Line Styles” on page 9-113
“Changing Indices into the ColorOrder and LineStyleOrder Arrays” on page 9-114

When you plot multiple data sets together in the same axes, MATLAB automatically assigns different
colors (and possibly line styles and markers) to the plot objects. You can customize the colors, line
styles, and markers when you call a plotting function, and you can also set properties after calling the
function.

For example, plot a solid red line and a dashed green line. Then add square markers to the red line
and circular markers to the green line.

p1 = plot([0 1 2 3],'-r');
hold on
p2 = plot([1 2 3 4],'--g');
hold off

% Add markers
p1.Marker = 'sq';
p2.Marker = 'o';

This approach is described in “Specify Plot Colors” on page 9-94. It is useful for customizing aspects
of a few plots. However, it is less flexible in other situations, such as plotting data in a loop, or
passing matrix data to plotting functions. In such cases, you can change the properties that control
how MATLAB automatically assigns colors, line styles, and markers.

Note Some of the functionality in the following examples is available starting in R2019b, and some of
the functionality is available starting in R2020a. To modify plot colors and line styles in an earlier
release, see Why Are Plot Lines Different Colors? and Line Styles Used for Plotting — LineStyleOrder.

How Automatic Assignment Works
MATLAB assigns colors to plot objects (such as Line, Scatter, and Bar objects) by cycling through
the colors listed in the ColorOrder property of the axes. The ColorOrder property contains an
array of RGB triplets, where each RGB triplet defines a color. The default ColorOrder array contains
seven colors. If you create more objects than there are colors, the colors repeat.

If the plot objects support line styles and markers, MATLAB also cycles through the list in the
LineStyleOrder property of the axes. The LineStyleOrder property contains a cell array of
character sequences, where each character sequence corresponds to a line style (or a line style
combined with a marker). The default LineStyleOrder array contains only the solid line style,
('-'). All of the colors in the ColorOrder array are used with one character sequence in the
LineStyleOrder array before the next sequence is used. The cycle continues for each new plot
object. If there are more objects than combinations of colors and character sequences, then the cycle
repeats.

 Control How Plotting Functions Select Colors and Line Styles

9-111

https://www.mathworks.com/help/releases/R2019a/matlab/graphics_transition/why-are-plot-lines-different-colors.html
https://www.mathworks.com/help/releases/R2019a/matlab/creating_plots/defining-the-color-of-lines-for-plotting.html

For a given pair of ColorOrder and LineStyleOrder arrays, the colors, line styles, and markers for
a particular plot object are determined by the value of the object's SeriesIndex, which is a new
property starting in R2020a. By default, the SeriesIndex property is a number that corresponds to
the object's order of creation, starting at 1. MATLAB uses the number to calculate indices into the
ColorOrder and LineStyleOrder arrays.

For example, create an axes object with two colors in its ColorOrder array (red and blue) and two
line styles in its LineStyleOrder array (solid and dashed). Then plot five lines.

ax = axes;
ax.ColorOrder = [1 0 0; 0 0 1];
ax.LineStyleOrder = {'-','--'};

hold on
for i = 1:5
 plot([i i+2])
end
hold off

This table lists the SeriesIndex, the index into the ColorOrder array, and the index into the
LineStyleOrder array for each line in the preceding plot.

 SeriesIndex Index into
ColorOrder
Array

Index into
LineStyleOr
der Array

Line Appearance

First Line 1 1 1 Red solid line
Second Line 2 2 1 Blue solid line
Third Line 3 1 2 Red dashed line
Fourth Line 4 2 2 Blue dashed line
Fifth Line 5 1 1 Red solid line

9 Axes Appearance

9-112

You can change the colors, line styles, and markers of plot objects by modifying the ColorOrder or
LineStyleOrder properties of the axes, or by changing the SeriesIndex properties of the plot
objects.

Changing Color Schemes and Line Styles
Changing the ColorOrder property of the axes changes the color scheme of your plot. Changing the
LineStyleOrder property of the axes changes the line styles (and possibly markers) used in your
plot. For example, plot eight lines in a loop using the default colors and line style.

ax = axes;
hold on
for i = 0:7
 plot([i i+2])
end
hold off

Replace the ColorOrder array with a new array that contains four colors (you can also replace this
array using the colororder function). Then replace the LineStyleOrder array with a new cell
array that contains two line styles. The lines automatically use the new colors and line styles.

% Updates existing plots in R2019b or later
ax.ColorOrder = [1 0 0; 0 1 0; 0 0 1; 0 0 0];
ax.LineStyleOrder = {'-','--'};

 Control How Plotting Functions Select Colors and Line Styles

9-113

Changing Indices into the ColorOrder and LineStyleOrder Arrays
Changing the SeriesIndex property on a plot object changes the indices into the ColorOrder and
LineStyleOrder arrays. Changing the indices is useful when you want the color, line style, and
marker of an object to match another object.

For example, plot four sine waves in a loop, varying the wavelength and phase. For each sine wave,
set the SeriesIndex property according to the wavelength. In the resulting plot, the sine waves that
have the same wavelength also have the same color.

x = linspace(0,10,200);
ax = axes;
hold on
for phi = 0:3:3
 for t = 1:2
 plot(x,sin(x/t + phi),'SeriesIndex',t) % Requires R2020a or later
 end
end
hold off

9 Axes Appearance

9-114

To make one pair of sine waves more prominent, change the color order to different set of colors.

ax.ColorOrder = [0.8 0.8 0.9; 0.2 0.2 0.8];

See Also
Functions
plot | gca | colororder

Properties
Axes

 Control How Plotting Functions Select Colors and Line Styles

9-115

More About
• “Specify Plot Colors” on page 9-94

9 Axes Appearance

9-116

Clipping in Plots and Graphs

This example shows how MATLAB® uses clipping in plots and how to control clipping.

What is Clipping?

Clipping occurs when part of a plot occurs outside the boundaries of an axes. In MATLAB®, the part
of the plot that is clipped does not appear on the screen or in printed output. The axis limits of the
plot determine the boundaries.

Turn Clipping Off

By default, MATLAB clips plots that extend outside of the axes limits.

figure
surf(peaks)
zlim([-4 4])

Use the axes Clipping property to control the clipping behavior.

ax = gca; % get the current axis
ax.Clipping = 'off'; % turn clipping off

Control the Clipping Style

Use the ClippingStyle property to control the way clipping works. If the ClippingStyle is set to
'3dbox', then MATLAB clips the plots to the volume defined by the limits of the x, y, and z axes. If
the ClippingStyle is set to 'rectangle', then MATLAB clips the plots to an imaginary rectangle
drawn around the outside of the x, y, and z axes. The plots below show the difference between the
two clipping styles.

Clipping in 2D plots

Clipping is also used in 2D plots. For example, MATLAB clips the sine wave in the plot below.

x = -pi:pi/20:pi;
y = sin(-pi:pi/20:pi);

 Clipping in Plots and Graphs

9-117

plot(x,y)
ylim([-0.9 0.9])

If clipping is turned off, then MATLAB displays the entire sine wave.

ax = gca;
ax.Clipping = 'off';

Clipping and Markers

Clipping does not affect markers drawn at each data point as long as the data point itself is inside the
x and y axis limits of the plot. MATLAB displays the entire marker even if it extends slightly outside
the boundaries of the axes.

p = plot(1:10,'*');
p.MarkerSize = 10;
axis([1 10 1 10])

9 Axes Appearance

9-118

Using Graphics Smoothing

This example shows how to use graphics and font smoothing in MATLAB plots.

What is Graphics Smoothing?

Graphics smoothing improves the appearance of graphics in plots. Smoothing removes jagged edges
that result from using pixels or dots to represent continuous objects. Techniques used for graphics
smoothing include multi-sampling and anti-aliasing.

Graphics Smoothing in a Figure

Graphics smoothing is controlled in a figure by using the GraphicsSmoothing property. By default,
the GraphicsSmoothing property is set to 'on'.

f = figure;
surf(peaks)

You can turn off graphics smoothing by setting the GraphicsSmoothing property to 'off'.

f.GraphicsSmoothing = 'off';

 Using Graphics Smoothing

9-119

Font Smoothing for Text and Axes Objects

The FontSmoothing property of a text or an axes object controls how text is rendered. When
FontSmoothing is set to 'on', text will be drawn with smoothed edges. Font smoothing is 'on' by
default.

t = text(14,27,-8.5, 'Minimum of Peaks');

9 Axes Appearance

9-120

t.FontSmoothing = 'off';

 Using Graphics Smoothing

9-121

Why Turn Graphics Smoothing Off?

Without graphics smoothing, horizontal and vertical lines will appear sharper. Certain chart types
may look better when graphics smoothing is turned off. Similarly, turning off font smoothing may
make text using small fonts appear clearer.

pcolor(rand(6))

9 Axes Appearance

9-122

ax = gca; % get current axes
ax.FontSmoothing = 'off'; % turn off axes font smoothing

 Using Graphics Smoothing

9-123

f.GraphicsSmoothing = 'off'; % turn off figure graphics smoothing

9 Axes Appearance

9-124

Coloring Graphs

• “Creating Colorbars” on page 10-2
• “Change Color Scheme Using a Colormap” on page 10-10
• “How Surface Plot Data Relates to a Colormap” on page 10-16
• “How Image Data Relates to a Colormap” on page 10-21
• “How Patch Data Relates to a Colormap” on page 10-26
• “Control Colormap Limits” on page 10-32
• “Differences Between Colormaps and Truecolor” on page 10-36

10

Creating Colorbars

Colorbars allow you to see the relationship between your data and the colors displayed in your chart.
After you have created a colorbar, you can customize different aspects of its appearance, such as its
location, thickness, and tick labels. For example, this colorbar shows the relationship between the
values of the peaks function and the colors shown in the plot next to it.

contourf(peaks)
c = colorbar;

The default location of the colorbar is on the right side of the axes. However, you can move the
colorbar to a different location by setting the Location property. In this case, the 'southoutside'
option places the colorbar below the axes.

c.Location = 'southoutside';

10 Coloring Graphs

10-2

You can also change the thickness of the colorbar. The “Position” property controls the location and
size of most graphics objects, including axes and colorbars. Because this colorbar is horizontal, the
fourth value in c.Position (which corresponds to height) controls its thickness. Here, the colorbar
is narrowed and the axes position is reset so that there is no overlap with the colorbar.

ax = gca;
axpos = ax.Position;
c.Position(4) = 0.5*c.Position(4);
ax.Position = axpos;

 Creating Colorbars

10-3

Colorbar objects have several properties for modifying the tick spacing and labels. For example, you
can specify that the ticks occur in only three places: -6.5, 0, and 8.

c.Ticks = [-6.5 0 8];

10 Coloring Graphs

10-4

You can change the tick labels to any values. Use a cell array to specify the tick labels.

c.TickLabels = {'Frigid','Freezing','Cold'};

 Creating Colorbars

10-5

You can also use TeX or LaTeX markup. Use the TickLabelInterpreter property to set the
interpreter when you use TeX or LaTeX.

c.TickLabelInterpreter = 'tex';
c.TickLabels = {'-6.5\circ','0\circ','8\circ'};

10 Coloring Graphs

10-6

You can change the limits of the colorbar to focus on a specific region of color. For example, you can
narrow the limits and adjust the tick labels to reflect the new limits. The resulting colorbar excludes
the dark blue shades that used to be on the left and the yellow shades that used to be on the right.

c.Limits = [-4 4];
c.Ticks = [-4 0 4];
c.TickLabels = {'-4\circ','0\circ','4\circ'};

 Creating Colorbars

10-7

Add a descriptive label to the colorbar using the Label property. Because the Label property must
be specified as a Text object, you must set the String property of the Text object first. Then you
can assign that Text object to the Label property. The following command accomplishes both tasks
in one step.

c.Label.String = 'Degrees Celsius';

10 Coloring Graphs

10-8

See Also
Functions
colorbar | pcolor

Properties
Colorbar

 Creating Colorbars

10-9

Change Color Scheme Using a Colormap

MATLAB® uses a default color scheme when it displays visualizations such as surface plots. You can
change the color scheme by specifying a colormap. Colormaps are three-column arrays containing
RGB triplets in which each row defines a distinct color.

For example, here is a surface plot with the default color scheme.

f = figure;
surf(peaks);

The following command changes the colormap of the current figure to winter, one of several
predefined colormaps (see “Colormaps” for a full list).

colormap winter;

10 Coloring Graphs

10-10

If you have multiple figures open, pass the Figure object as the first argument to the colormap
function.

colormap(f,hot);

 Change Color Scheme Using a Colormap

10-11

Each predefined colormap provides a palette of 256 colors by default. However, you can specify any
number of colors by passing a whole number to the predefined colormap function. For example, here
is the hot colormap with ten entries.

c = hot(10);
colormap(c);

10 Coloring Graphs

10-12

You can also create your own colormap as an m-by-3 array. Each row in the array contains the red,
green, and blue intensities of a different color. The intensities are in the range [0,1]. Here is a simple
colormap that contains three entries.

mycolors = [1 0 0; 1 1 0; 0 0 1];
colormap(mycolors);

 Change Color Scheme Using a Colormap

10-13

If you are working with multiple axes, you can assign a different colormap to each axes by passing the
axes object to the colormap function.

tiledlayout(1,2)
ax1 = nexttile;
surf(peaks);
shading interp;
colormap(ax1,parula(10));

ax2 = nexttile;
surf(peaks);
shading interp;
colormap(ax2,cool(10));

10 Coloring Graphs

10-14

See Also

Related Examples
• “How Surface Plot Data Relates to a Colormap” on page 10-16

 Change Color Scheme Using a Colormap

10-15

How Surface Plot Data Relates to a Colormap

When you create surface plots using functions such as surf or mesh, you can customize the color
scheme by calling the colormap function. If you want further control over the appearance, you can
change the direction or pattern of the colors across the surface. This customization requires changing
values in an array that controls the relationship between the surface and the colormap.

Relationship Between the Surface and the Colormap
The CData property of a Surface object contains an indexing array C that associates specific
locations in your plot with colors in the colormap. C has the following relationship to the surface z =
f(x,y):

• C is the same size as Z, where Z is the array containing the values of f(x,y) at each grid point on
the surface.

• The value at C(i,j) controls the color at the grid location (i,j) on the surface.
• By default, C is equal to Z, which corresponds to colors varying with altitude.
• By default, the range of C maps linearly to the number of rows in the colormap array.

For example, a 3-by-3 sampling of Z = X + Y has the following relationship to a colormap containing
N entries.

Notice that the smallest value (-2) maps to the first row in the colormap. The largest value (2) maps
to the last row in the colormap. The intermediate values in C map linearly to the intermediate rows in
the colormap.

Note The preceding surface plot shows how colors are assigned to vertices on the surface. However,
the default behavior is to fill the patch faces with solid color. That solid color is based on the colors
assigned to the surrounding vertices. For more information, see the FaceColor property description.

10 Coloring Graphs

10-16

Change the Direction or Pattern of Colors

When using the default value of C=Z, the colors vary with changes in Z.

[X,Y] = meshgrid(-10:10);
Z = X + Y;
s = surf(X,Y,Z);
xlabel('X');
ylabel('Y');
zlabel('Z');

You can change this behavior by specifying C when you create the surface. For example, the colors on
this surface vary with X.

C = X;
s = surf(X,Y,Z,C);
xlabel('X');
ylabel('Y');
zlabel('Z');

 How Surface Plot Data Relates to a Colormap

10-17

Alternatively, you can set the CData property directly. This command makes the colors vary with Y.

s.CData = Y;

10 Coloring Graphs

10-18

The colors do not need to follow changes in a single dimension. In fact, CData can be any array that
is the same size as Z. For example, the colors on this plane follow the shape of a sinc function.

R = sqrt(X.^2 + Y.^2) + eps;
s.CData = sin(R)./(R);

 How Surface Plot Data Relates to a Colormap

10-19

See Also
Functions
surf | mesh

Properties
Chart Surface

Related Examples
• “Change Color Scheme Using a Colormap” on page 10-10
• “Differences Between Colormaps and Truecolor” on page 10-36

10 Coloring Graphs

10-20

How Image Data Relates to a Colormap
When you display images using the image function, you can control how the range of pixel values
maps to the range of the colormap. For example, here is a 5-by-5 magic square displayed as an image
using the default colormap.

A = magic(5)

A =

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

im = image(A);
axis off
colorbar

A contains values between 1 and 25. MATLAB treats those values as indices into the colormap, which
has 64 entries. Thus, all the pixels in the preceding image map to the first 25 entries in the colormap
(roughly the blue region of the colorbar).

 How Image Data Relates to a Colormap

10-21

You can control this mapping with the CDataMapping property of the Image object. The default
behavior shown in the preceding diagram corresponds to the 'direct' option for this property.
Direct mapping is useful when you are displaying images (such as GIF images) that contain their own
colormap. However, if your image represents measurements of some physical unit (e.g., meters or
degrees) then set the CDataMapping property to 'scaled'. Scaled mapping uses the full range of
colors, and it allows you to visualize the relative differences in your data.

im.CDataMapping = 'scaled';

The 'scaled' option maps the smallest value in A to the first entry in the colormap, and maps
largest value in A maps to the last entry in the colormap. All intermediate values of A are linearly
scaled to the colormap.

10 Coloring Graphs

10-22

As an alternative to setting the CDataMapping property to 'scaled', you can call the imagesc
function to get the same effect.

imagesc(A)
axis off
colorbar

If you change the colormap, the values in A are scaled to the new colormap.

colormap(gray)

 How Image Data Relates to a Colormap

10-23

Scaled mapping is also useful for displaying pictorial images that have no colormap, or when you
want to change the colormap for a pictorial image. The following commands display an image using
the gray colormap, which is different than the original colormap that is stored with this image.

load clown
image(X,'CDataMapping','scaled')
colormap(gray)
axis off
colorbar

See Also
Functions
image | imagesc

10 Coloring Graphs

10-24

Properties
Image

Related Examples
• “Image Types” on page 15-4
• “Differences Between Colormaps and Truecolor” on page 10-36

 How Image Data Relates to a Colormap

10-25

How Patch Data Relates to a Colormap

When you create graphics that use Patch objects, you can control the overall color scheme by calling
the colormap function. You can also control the relationship between the colormap and your patch
by:

• Assigning specific colors to the faces
• Assigning specific colors to the vertices surrounding each face

The way you control these relationships depends on how you specify your patches: as x-, y-, and z-
coordinates, or as face-vertex data.

Relationship of the Colormap to x-, y-, and z-Coordinate Arrays
If you create a Patch object using x-, y-, and z-coordinate arrays, the CData property of the Patch
object contains an indexing array C. This array controls the relationship between the colormap and
your patch. To assign colors to the faces, specify C as an array with these characteristics:

• C is an n-by-1 array, where n is the number of faces.
• The value at C(i) controls the color for face i.

Here is an example of C and its relationship to the colormap and three faces. The value of C(i)
controls the color for the face defined by vertices (X(i,:), Y(i,:)).

The smallest value in C is 0. It maps to the first row in the colormap. The largest value in C is 1, and it
maps to the last row in the colormap. Intermediate values of C map linearly to the intermediate rows
in the colormap. In this case, C(2) maps to the color located about two-thirds from the beginning of
the colormap. This code creates the Patch object described in the preceding illustration.

X = [0 0 5; 0 0 5; 4 4 9];
Y = [0 4 0; 3 7 3; 0 4 0];
C = [0; .6667; 1];
p = patch(X,Y,C);
colorbar

10 Coloring Graphs

10-26

To assign colors to the vertices, specify C as an array with these characteristics:

• C is an m-by-n array, where m is the number of vertices per face, and n is the number of faces.
• The value at C(i,j) controls the color at vertex i of face j.

Here is an example of C and its relationship to the colormap and six vertices. The value of C(i,j)
controls the color for the vertex at (X(i,j), Y(i,j)).

As with patch faces, MATLAB scales the values in C to the number of rows in the colormap. In this
case, the smallest value is C(2,2)=1, and it maps to the first row in the colormap. The largest value
is C(3,1)=6, and it maps to the last row in the colormap.

 How Patch Data Relates to a Colormap

10-27

This code creates the Patch object described in the preceding illustration. The FaceColor property
is set to 'interp' to make the vertex colors blend across each face.

clf
X = [0 3; 0 3; 5 6];
Y = [0 3; 5 6; 0 3];
C = [5 4; 2 0; 6 3];
p = patch(X,Y,C,'FaceColor','interp');
colorbar

Relationship of the Colormap to Face-Vertex Data
If you create patches using face-vertex data, the FaceVertexCData property of the Patch object
contains an indexing array C. This array controls the relationship between the colormap and your
patch.

To assign colors to the faces, specify C as an array with these characteristics:

• C is an n-by-1 array, where n is the number of faces.
• The value at C(i) controls the color for face i.

Here is an example of C and its relationship to the colormap and three faces.

10 Coloring Graphs

10-28

The smallest value in C is 0, and it maps to the first row in the colormap. The largest value in C is 1,
and it maps to the last value in the colormap. Intermediate values of C map linearly to the
intermediate rows in the colormap. In this case, C(2) maps to the color located about two-thirds from
the bottom of the colormap.

This code creates the Patch object described in the preceding illustration. The FaceColor property
is set to 'flat' to display the colormap colors instead of the default color, which is black.

clf
vertices = [0 0; 0 3; 4 0; 0 4; 0 7; 4 4; 5 0; 5 3; 9 0];
faces = [1 2 3; 4 5 6; 7 8 9];
C = [0; 0.6667; 1];
p = patch('Faces',faces,'Vertices',vertices,'FaceVertexCData',C);
p.FaceColor = 'flat';
colorbar

 How Patch Data Relates to a Colormap

10-29

To assign colors to the vertices, specify the FaceVertexCData property of the Patch object as array
C with these characteristics:

• C is an n-by-1 array, where n is the number of vertices.
• The value at C(i) controls the color at vertex i.

Here is an example of C and its relationship to the colormap and six vertices.

As with patch faces, MATLAB scales the values in C to the number of rows in the colormap. In this
case, the smallest value is C(2)=1, and it maps to the first row in the colormap. The largest value is
C(6)=6, and it maps to the last row in the colormap.

This code creates the Patch object described in the preceding illustration. The FaceColor property
is set to 'interp' to make the vertex colors blend across each face.

10 Coloring Graphs

10-30

clf
vertices = [0 0; 0 5; 5 0; 3 3; 3 6; 6 3];
faces = [1 2 3; 4 5 6];
C = [5; 1; 4; 3; 2; 6];
p = patch('Faces',faces,'Vertices',vertices,'FaceVertexCData',C);
p.FaceColor = 'interp';
colorbar

See Also
Functions
patch

Properties
Patch

Related Examples
• “Change Color Scheme Using a Colormap” on page 10-10
• “Differences Between Colormaps and Truecolor” on page 10-36

 How Patch Data Relates to a Colormap

10-31

Control Colormap Limits
For many types of visualizations you create, MATLAB maps the full range of your data to the
colormap by default. The smallest value in your data maps to the first row in the colormap, and the
largest value maps to the last row in the colormap. All intermediate values map linearly to the
intermediate rows of the colormap.

This default mapping is useful in most cases, but you can perform the mapping over any range you
choose, even if the range you choose is different than the range of your data. Choosing a different
mapping range allows you to:

• See where your data is at or beyond the limits of that range.
• See where your data lies within that range.

Consider the surface Z = X + Y, where –10 ≤ x ≤ 10 and –10 ≤ y ≤ 10.

[X,Y] = meshgrid(-10:10);
Z = X + Y;
s = surf(X,Y,Z);
xlabel('X');
ylabel('Y');
zlabel('Z = C');
colorbar

“How Surface Plot Data Relates to a Colormap” on page 10-16 describes the properties that control
the color in this presentation. Essentially, the CData property of the Surface object contains an
array C that associates each grid point on the surface to a color in the colormap. By default, C is equal
to Z, where Z is the array containing the values of z = f(x,y) at the grid points. Thus, the colors vary
with changes in Z.

The mapping range is controlled by the CLim property of the Axes object. This property contains a
two-element vector of the form [cmin cmax]. The default value of cmin is equal to the smallest

10 Coloring Graphs

10-32

value of C, and the default value of cmax is the largest value of C. In this case, CLim is [-20 20]
because the range of C reflects the range of Z.

Changing CLim to [0 20] clips all the values at or below 0 to the first color in the colormap.

The clim function changes the CLim property to [0 20]. Notice that the lower half of the surface
maps to the first color in the colormap (dark blue). This clipping occurs because C (which is equal to
Z) is less than or equal to zero at those points.

clim([0 20])

 Control Colormap Limits

10-33

Before R2022a, change the colormap limits using caxis([0 20]).

You can also widen the mapping range to see where your data lies within that range. For example,
changing the range to [-60 20] results in a surface that only uses half of the colors. The lower half
of the colormap corresponds to values that are outside the range of C, so those colors are not
represented on the surface.

caxis([-60 20])

Before R2022a, change the colormap limits using caxis([-60 20]).

10 Coloring Graphs

10-34

Note You can set the CLim property for surface plots, patches, images, or any graphics object that
uses a colormap. However, this property only affects graphics objects that have the CDataMapping
property set to 'scaled'. If the CDataMapping property is set to 'direct', then all values of C
index directly into the colormap without any scaling. Any values of C that are less than 1 are clipped
to the first color in the colormap. Any values of C that are greater than the length of the colormap are
clipped to the last color in the colormap.

See Also
clim | colormap | colorbar | surf

Related Examples
• “Change Color Scheme Using a Colormap” on page 10-10
• “How Surface Plot Data Relates to a Colormap” on page 10-16
• “Creating Colorbars” on page 10-2

 Control Colormap Limits

10-35

Differences Between Colormaps and Truecolor
Many graphics objects, such as surfaces, patches, and images, support two different techniques for
specifying color: colormaps (which use indexed color) and truecolor. Each technique involves a
different workflow and has a different impact on your visual presentation.

Differences in Workflow
A colormap is an m-by-3 array in which each row specifies an RGB triplet. To use a colormap in a
graphical presentation, you assign an index to each location in your graphic. Each index addresses a
row in the colormap to display a color at the specified location in the graphic. By contrast, using
truecolor involves specifying an RGB triplet at every location in your graphic.

Here are some points to consider when deciding which to technique to use:

• Truecolor is more direct. If you want to assign specific red, green, and blue values to specific
locations in your graphic, it is usually easier to do it using truecolor.

• Making changes in a region of the color palette is easier to do in a colormap. For example, if you
want to brighten the transition from blue to green in a gradient, it is easier to edit those rows in
the colormap than it is to edit the colors at the individual locations in your graphic.

• The format of your data might be more appropriate for one of the workflows. For example, many
compressed GIF images are stored using indexed color.

Both coloring techniques use a color array C to specify the color information. The shape of C depends
on the type of graphics object and the coloring method you choose. This table summarizes the
differences.

Type of Graphics
Object

Property that
Contains Color Array
C

Shape of C for
Indexed Color

Shape of C for
Truecolor

Surface CData C is an m-by-n array
that is the same size as
the z-coordinate array.
The value at C(i,j)
specifies the colormap
index for Z(i,j).

C is an m-by-n-by-3
array, where C(:,:,i)
the same size as the z-
coordinate array.
C(i,j,1) specifies the
red component for
Z(i,j).
C(i,j,2) specifies the
green component for
Z(i,j).
C(i,j,3) specifies the
blue component for
Z(i,j).

10 Coloring Graphs

10-36

Type of Graphics
Object

Property that
Contains Color Array
C

Shape of C for
Indexed Color

Shape of C for
Truecolor

Image CData C is an m-by-n array for
an m-by-n image. The
value at C(i,j)
specifies the colormap
index for pixel (i,j).

C is an m-by-n-by-3
array for an m-by-n
image.
C(i,j,1) specifies the
red component for pixel
(i,j).
C(i,j,2) specifies the
green component for
pixel (i,j).
C(i,j,3) specifies the
blue component for
pixel (i,j).

Patch (x, y, z) CData To color patch faces, C
is a 1-by-m array for m
patch faces. C(i)
specifies the colormap
index for face i.
To color patch vertices,
C is an m-by-n array,
where m is the number
of vertices per face, and
n is the number of
faces. C(i,j) specifies
the colormap index for
vertex i of face j.

To color patch faces, C
is an m-by-3 array for m
patch faces. C(i,:)
specifies the red, green,
and blue values for face
i.
To color patch vertices,
C is an n-by-3 array,
where n is the total
number of vertices.
C(i,:) specifies the
red, green, and blue
values for vertex i.

Patch (face-vertex
data)

FaceVertexCData To color patch faces, C
is a 1-by-m array for m
patch faces. C(i)
specifies the colormap
index for face i.
To color patch vertices,
C is a 1-by-n array,
where n is the total
number of vertices.
C(i) specifies the
colormap index for
vertex i.

To color patch faces, C
is an m-by-3 array for m
patch faces. C(i,:)
specifies the red, green,
and blue values for face
i.
To color patch vertices,
C is an n-by-3 array,
where n is the total
number of vertices.
C(i,:) specifies the
red, green, and blue
values for vertex i.

Differences in Visual Presentation
Colormaps offer a palette of m colors, where m is the length of the colormap. By contrast, truecolor
offers a palette of 256 × 256 × 256 ≈ 1.68 million colors.

Consider these factors as you decide how large your color palette needs to be:

• Smaller color palettes are the most economical way to fill large regions with solid color. They are
also useful in visualizing contours of surfaces.

 Differences Between Colormaps and Truecolor

10-37

• Larger color palettes are better for showing subtle transitions and smooth color gradients.

Interpolating vertex colors across a patch face is one situation in which the differences between
indexed color and truecolor are more noticeable. The following two patches illustrate an extreme
case. The patch on the left uses a small colormap, whereas the patch on the right uses truecolor.

If you are concerned about the limited palette of a colormap, you can add more colors to it. “Change
Color Scheme Using a Colormap” on page 10-10 shows how to use a colormap with a specific number
of colors.

See Also

Related Examples
• “Image Types” on page 15-4
• “Change Color Scheme Using a Colormap” on page 10-10
• “How Surface Plot Data Relates to a Colormap” on page 10-16
• “How Image Data Relates to a Colormap” on page 10-21
• “How Patch Data Relates to a Colormap” on page 10-26

10 Coloring Graphs

10-38

Lighting

• “Lighting Overview” on page 11-2
• “Reflectance Characteristics of Graphics Objects” on page 11-7

11

Lighting Overview
In this section...
“Lighting Commands” on page 11-2
“Light Objects” on page 11-2
“Properties That Affect Lighting” on page 11-2
“Examples of Lighting Control” on page 11-4

Lighting Commands
The MATLAB graphics environment provides commands that enable you to position light sources and
adjust the characteristics of the objects that are reflecting the lights. These commands include the
following.

Command Purpose
camlight Create or move a light with respect to the camera position
lightangle Create or position a light in spherical coordinates
light Create a light object
lighting Select a lighting method
material Set the reflectance properties of lit objects

You can set light and lit-object properties to achieve specific results. In addition to the material in this
topic area, you can explore the lighting examples as an introduction to lighting for visualization.

Light Objects
You create a light object using the light function. Three important light object properties are

• Color — Color of the light cast by the light object
• Style — Either infinitely far away (the default) or local
• Position — Direction (for infinite light sources) or the location (for local light sources)

The Color property determines the color of the directional light from the light source. The color of
an object in a scene is determined by the color of the object and the light source.

The Style property determines whether the light source is a point source (Style set to local),
which radiates from the specified position in all directions, or a light source placed at infinity (Style
set to infinite), which shines from the direction of the specified position with parallel rays.

The Position property specifies the location of the light source in axes data units. In the case of a
light source at infinity, Position specifies the direction to the light source.

Lights affect surface and patch objects that are in the same axes as the light. These objects have a
number of properties that alter the way they look when illuminated by lights.

Properties That Affect Lighting

11 Lighting

11-2

You cannot see light objects themselves, but you can see their effects on any patch and surface
objects present in the axes containing the light. A number of functions create these objects, including
surf, mesh, pcolor, fill, and fill3 as well as the surface and patch functions.

You control lighting effects by setting various axes, light, patch, and surface object properties. All
properties have default values that generally produce desirable results. However, you can achieve the
specific effect you want by adjusting the values of these properties.

Property Effect
AmbientLightColor An axes property that specifies the color of the background light in the

scene, which has no direction and affects all objects uniformly. Ambient
light effects occur only when there is a visible light object in the axes.

AmbientStrength A patch and surface property that determines the intensity of the ambient
component of the light reflected from the object.

DiffuseStrength A patch and surface property that determines the intensity of the diffuse
component of the light reflected from the object.

SpecularStrength A patch and surface property that determines the intensity of the specular
component of the light reflected from the object.

SpecularExponent A patch and surface property that determines the size of the specular
highlight.

SpecularColorReflectance A patch and surface property that determines the degree to which the
specular reflections are colored by the object color or the light source
color.

FaceLighting A patch and surface property that determines the method used to calculate
the effect of the light on the faces of the object. Choices are either no
lighting, flat, or Gouraud, lighting algorithm.

EdgeLighting A patch and surface property that determines the method used to calculate
the effect of the light on the edges of the object. Choices are either no
lighting, flat, or Gouraud lighting algorithm.

BackFaceLighting A patch and surface property that determines how faces are lit when their
vertex normals point away from the camera. This property is useful for
discriminating between the internal and external surfaces of an object.

FaceColor A patch and surface property that specifies the color of the object faces.
EdgeColor A patch and surface property that specifies the color of the object edges.
VertexNormals A patch and surface property that contains normal vectors for each vertex

of the object. MATLAB uses vertex normal vectors to perform lighting
calculations. While MATLAB automatically generates this data, you can
also specify your own vertex normals.

NormalMode A patch and surface property that determines whether MATLAB
recalculates vertex normals if you change object data (auto) or uses the
current values of the VertexNormals property (manual). If you specify
values for VertexNormals, MATLAB sets this property to manual.

For more information, see Axes, Chart Surface, and Patch.

 Lighting Overview

11-3

Examples of Lighting Control
Lighting is a technique for adding realism to a graphical scene. It does this by simulating the
highlights and dark areas that occur on objects under natural lighting (e.g., the directional light that
comes from the sun). To create lighting effects, MATLAB defines a graphics object called a light.
MATLAB applies lighting to surface and patch objects.

Example — Adding Lights to a Scene

This example displays the membrane surface and illuminates it with a light source emanating from a
location to the right of the camera position.

membrane
camlight

Creating a light activates a number of lighting-related properties controlling characteristics such as
the ambient light and reflectance properties of objects.

Example — Illuminating Mathematical Functions

Lighting can enhance surface graphs of mathematical functions. For example, use the ezsurf
command to evaluate the expression

sin x2 + y2 ÷ x2 + y2

over the region -6π to 6π.

11 Lighting

11-4

h = fsurf(@(x,y) sin(sqrt(x.^2+y.^2))./sqrt(x.^2+y.^2), ...
[-6*pi,6*pi]);

Now add lighting using the lightangle function, which accepts the light position in terms of
azimuth and elevation.

view(0,75)
shading interp
lightangle(-45,30)
h.FaceLighting = 'gouraud';
h.AmbientStrength = 0.3;
h.DiffuseStrength = 0.8;
h.SpecularStrength = 0.9;
h.SpecularExponent = 25;
h.BackFaceLighting = 'unlit';

 Lighting Overview

11-5

After obtaining the surface object's handle using findobj, you can set properties that affect how the
light reflects from the surface. See “Properties That Affect Lighting” on page 11-2 for more detailed
descriptions of these properties.

11 Lighting

11-6

Reflectance Characteristics of Graphics Objects

In this section...
“Specular and Diffuse Reflection” on page 11-7
“Ambient Light” on page 11-7
“Specular Exponent” on page 11-8
“Specular Color Reflectance” on page 11-9
“Back Face Lighting” on page 11-9
“Positioning Lights in Data Space” on page 11-10

Specular and Diffuse Reflection
You can specify the reflectance characteristics of patch and surface objects and thereby affect the
way they look when lights are applied to the scene. It is likely you will adjust these characteristics in
combination to produce particular results.

Also see the material command for a convenient way to produce certain lighting effects.

You can control the amount of specular and diffuse reflection from the surface of an object by setting
the SpecularStrength and DiffuseStrength properties. This picture illustrates various settings.

Ambient Light

Ambient light is a directionless light that shines uniformly on all objects in the scene. Ambient light is
visible only when there are light objects in the axes. There are two properties that control ambient

 Reflectance Characteristics of Graphics Objects

11-7

light — AmbientLightColor is an axes property that sets the color, and AmbientStrength is a
property of patch and surface objects that determines the intensity of the ambient light on the
particular object.

This illustration shows three different ambient light colors at various intensities. The sphere is red
and there is a white light object present.

The green [0 1 0] ambient light does not affect the scene because there is no red component in green
light. However, the color defined by the RGB values [.5 0 1] does have a red component, so it
contributes to the light on the sphere (but less than the white [1 1 1] ambient light).

Specular Exponent
The size of the specular highlight spot depends on the value of the patch and surface object's
SpecularExponent property. Typical values for this property range from 1 to 500, with normal
objects having values in the range 5 to 20.

This illustration shows a red sphere illuminated by a white light with three different values for the
SpecularExponent property.

11 Lighting

11-8

Specular Color Reflectance
The color of the specularly reflected light can range from a combination of the color of the object and
the color of the light source to the color of the light source only. The patch and surface
SpecularColorReflectance property controls this color. This illustration shows a red sphere
illuminated by a white light. The values of the SpecularColorReflectance property range from 0
(object and light color) to 1 (light color).

Back Face Lighting

Back face lighting is useful for showing the difference between internal and external faces. These
pictures of cut-away cylindrical surfaces illustrate the effects of back face lighting.

The default value for BackFaceLighting is reverselit. This setting reverses the direction of the
vertex normals that face away from the camera, causing the interior surface to reflect light towards
the camera. Setting BackFaceLighting to unlit disables lighting on faces with normals that point
away from the camera.

 Reflectance Characteristics of Graphics Objects

11-9

Positioning Lights in Data Space
This example creates a sphere and a cube and illuminates then with two light sources. The light
objects are located at infinity, but in the directions specified by their position vectors.

% Create a sphere
sphere(36);
axis([-3 3 -3 3 -3 3])
hold on
% Create a cube
fac = [1 2 3 4;2 6 7 3;4 3 7 8;1 5 8 4;1 2 6 5;5 6 7 8];
vert = [1 1 1;1 2 1;2 2 1;2 1 1;1 1 2;1 2 2;2 2 2;2 1 2];
patch('faces',fac,'vertices',vert,'FaceColor','y');
% Add lights
light('Position',[1 3 2]);
light('Position',[-3 -1 3]);
hold off

The light functions define two light objects located at infinity in the direction specified by the
Position vectors. These vectors are defined in axes coordinates [x, y, z].

11 Lighting

11-10

Transparency

• “Add Transparency to Graphics Objects” on page 12-2
• “Changing Transparency of Images, Patches or Surfaces” on page 12-9
• “Modify the Alphamap” on page 12-16

12

Add Transparency to Graphics Objects

In this section...
“What Is Transparency?” on page 12-2
“Graphics Objects that Support Transparency” on page 12-2
“Create Area Chart with Transparency” on page 12-3
“Create Bar Chart with Transparency” on page 12-4
“Create Scatter Chart with Transparency” on page 12-5
“Vary Transparency Using Alpha Data” on page 12-6
“Vary Surface Chart Transparency” on page 12-7
“Vary Patch Object Transparency” on page 12-7

What Is Transparency?
The transparency of a graphics object determines the degree to which you can see through it. Add
transparency to graphics objects to customize the look of your charts or reveal details about an object
that are otherwise hidden. This table shows the difference between an opaque and semitransparent
surface.

Opaque Object Semitransparent Object

Graphics Objects that Support Transparency
Control the transparency of an object using the alpha function or by setting properties of the object
related to transparency. Some graphics objects support using a different transparency value for the
faces versus the edges of the object.

This table lists the objects that support transparency and the corresponding properties. Set the
properties to a scalar value in the range [0,1]. A value of 0 means completely transparent, a value
of 1 means completely opaque, and values between 0 and 1 are semitransparent.

12 Transparency

12-2

Graphics Objects that Support Transparency Properties for Uniform Transparency
Area FaceAlpha

EdgeAlpha
Bar series FaceAlpha

EdgeAlpha
Scatter series MarkerFaceAlpha

MarkerEdgeAlpha
BubbleChart series MarkerFaceAlpha

MarkerEdgeAlpha
Histogram FaceAlpha
Histogram2 FaceAlpha
Chart surface FaceAlpha

EdgeAlpha
Primitive surface FaceAlpha

EdgeAlpha
Patch FaceAlpha

EdgeAlpha
Image AlphaData

Tip Patch, surface, scatter, and image objects support using alpha data to vary the transparency
across the object. For more information, see “Vary Transparency Using Alpha Data” on page 12-6.

Create Area Chart with Transparency

Combine two semitransparent area charts by setting the FaceAlpha and EdgeAlpha properties for
each area object.

x = linspace(0,10);
y1 = 4 + sin(x).*exp(0.1*x);
area(x,y1,'FaceColor','b','FaceAlpha',.3,'EdgeAlpha',.3)

y2 = 4 + cos(x).*exp(0.1*x);
hold on
area(x,y2,'FaceColor','r','FaceAlpha',.3,'EdgeAlpha',.3)
hold off

 Add Transparency to Graphics Objects

12-3

Create Bar Chart with Transparency

Create a semitransparent bar chart by setting the FaceAlpha property of the bar series object to a
value between 0 and 1. Display the grid lines.

month = 1:5;
sales = [10 25 85 35 16];
bar(month,sales,'FaceAlpha',.5)
grid on

12 Transparency

12-4

Create Scatter Chart with Transparency

Create a scatter plot using blue, semitransparent markers. Then, add a second scatter plot using red,
semitransparent markers. Specify the marker color by setting the MarkerFaceColor and
MarkerEdgeColor properties of the scatter series object. Specify the transparency by setting the
MarkerFaceAlpha and MarkerEdgeAlpha properties to a scalar value between 0 and 1.

x = [5 10 11 13 18];
y1 = [40 80 150 80 50];
a1 = 100*[100 50 80 30 50];
scatter(x,y1,a1,'MarkerFaceColor','b','MarkerEdgeColor','b',...
 'MarkerFaceAlpha',.2,'MarkerEdgeAlpha',.2)
axis([0 20 0 200])

x = [2 6 8 11 13];
y2 = [30 40 100 60 140];
a2 = 100*[30 50 30 80 80];
hold on
scatter(x,y2,a2,'MarkerFaceColor','r','MarkerEdgeColor','r',...
 'MarkerFaceAlpha',.2,'MarkerEdgeAlpha',.2)
hold off

 Add Transparency to Graphics Objects

12-5

Vary Transparency Using Alpha Data
Patch, surface, and image objects have a few additional properties for varying the transparency
across the object.

• Images — Specify a different transparency value for each image element. Specify the values by
setting the AlphaData property to an array the same size as the CData property.

• Chart and primitive surfaces — Specify a different transparency value for each face and edge.
Additionally, you can specify whether to use flat or interpolated transparency across each face or
edge. First, specify the transparency values by setting the AlphaData property to an array the
same size as the ZData property. Then, specify flat or interpolated transparency by setting the
FaceAlpha and EdgeAlpha properties to either 'flat' or 'interp'.

• Patches — Specify a different transparency value for each face and edge. Additionally, you can
specify whether to use flat or interpolated transparency across each face or edge. First, specify
the transparency values by setting the FaceVertexAlphaData property to a column vector with
length equal to either the number of faces (for flat transparency) or the number of vertices in the
patch (for interpolated transparency). Then, specify flat or interpolated transparency by setting
the FaceAlpha and EdgeAlpha properties to either 'flat' or 'interp'.

• Scatter plots — Specify a different transparency value for each marker. First, specify the
transparency values by setting the AlphaData property to an array the same size as the XData
property. Then, specify flat transparency by setting either the MarkerFaceAlpha or
MarkerEdgeAlpha property to 'flat'.

12 Transparency

12-6

Use the AlphaDataMapping property to control how the objects interpret the alpha data values. See
the property descriptions for more details.

Vary Surface Chart Transparency

Create a surface and vary the transparency based on the gradient of the z data. Use a flat
transparency across each surface face by setting the FaceAlpha to 'flat'. Set the surface color to
blue to show how the transparency varies.

[x,y] = meshgrid(-2:.2:2);
z = x.*exp(-x.^2-y.^2);
a = gradient(z);

surf(x,y,z,'AlphaData',a,...
 'FaceAlpha','flat',...
 'FaceColor','blue')

Vary Patch Object Transparency

Plot a line using the patch function. Set the last entry of y to NaN so that patch creates a line
instead of a closed polygon.

 Add Transparency to Graphics Objects

12-7

Define one transparency value per vertex by setting the FaceVertexAlphaData property to a
column vector. Interpret the values as transparency values (0 is invisible, 1 is opaque) by setting the
AlphaDataMapping property to 'none'. Interpolate the transparency between vertices by setting
the EdgeAlpha property to 'interp'.

x = linspace(1,10,10);
y = sin(x);
y(end) = NaN;

figure
alpha_values = linspace(0,1,10)';
patch(x,y,'red','EdgeColor','red',...
 'FaceVertexAlphaData',alpha_values,'AlphaDataMapping','none',...
 'EdgeAlpha','interp')

See Also
alpha | alphamap | alim | scatter | bar | image | surf | patch | area

12 Transparency

12-8

Changing Transparency of Images, Patches or Surfaces

This example shows how to modify transparency of images, patches and surfaces.

Transparency for All Objects in Axes

Transparency values are referred to as alpha values. Use the alpha function to set the transparency
for all image, patch, and surface objects in the current axes. Specify a transparency value between 0
(fully transparent) and 1 (fully opaque).

t = 0:0.1:2*pi;
x = sin(t);
y = cos(t);

figure
patch(x,y,'r')
patch(x+0.8,y,'g')
patch(x+0.4,y+0.8,'b')
axis square tight
alpha(0.3)

Transparency for Individual Surfaces

The transparency of a surface is defined by its AlphaData property. Set the alpha data as either a
scalar value or a matrix of values specifying the transparency of each vertex of the surface. The

 Changing Transparency of Images, Patches or Surfaces

12-9

FaceAlpha property indicates how the transparency of the surface faces are determined from vertex
transparency.

[X,Y,Z] = peaks(20);
s2 = surf(X,Y,Z);

s2.AlphaData = gradient(Z);
s2.FaceAlpha = 'flat';

Transparency for Individual Images

Like surfaces, the transparency of an image is also defined by its AlphaData property. For images,
set the alpha data as either a scalar value or a matrix of values specifying the transparency of each
element in the image data.

For example, use transparency to overlay two images. First, display the image of the Earth.

earth = imread('landOcean.jpg');
image(earth)
axis image

12 Transparency

12-10

Then, add a cloud layer to the image of the Earth using transparency.

clouds = imread('cloudCombined.jpg');
image(earth)
axis image
hold on

im = image(clouds);
im.AlphaData = max(clouds,[],3);
hold off

 Changing Transparency of Images, Patches or Surfaces

12-11

Transparency for Individual Patches

The transparency of a patch is defined by its FaceAlpha and FaceVertexAlphaData properties.
For constant transparency across the entire patch, set the FaceVertexAlphaData to a constant
between 0 (fully transparent) and 1 (fully opaque), and set the FaceAlpha property to 'flat'.

cla
p1 = patch(x,y,'r');
axis square tight
p1.FaceVertexAlphaData = 0.2;
p1.FaceAlpha = 'flat' ;

12 Transparency

12-12

For transparency that varies across the patch, set the FaceVertexAlphaData to a matrix of values
specifying the transparency at each vertex or each face of the patch. The FaceAlpha property then
indicates how the face transparencies are determined using the FaceVertexAlphaData. If alpha
data is specified for vertices, FaceAlpha must be set to 'interp'.

p1.FaceVertexAlphaData = x';
p1.FaceAlpha = 'interp';

 Changing Transparency of Images, Patches or Surfaces

12-13

Transparency with Texture Mapping

Texture mapping maps a 2-D image onto a 3-D surface. An image can be mapped to a surface by
setting the CData property to the image data and setting the FaceColor property to be
'texturemap'.

This example creates a 3-D view of the earth and clouds. It creates spherical surfaces and uses
texture mapping to map the images of the earth and clouds onto the surfaces.

[px,py,pz] = sphere(50);

sEarth = surface(py, px ,flip(pz));
sEarth.FaceColor = 'texturemap';
sEarth.EdgeColor = 'none';
sEarth.CData = earth;
hold on
sCloud = surface(px*1.02,py*1.02,flip(pz)*1.02);

sCloud.FaceColor = 'texturemap';
sCloud.EdgeColor = 'none';
sCloud.CData = clouds;

sCloud.FaceAlpha = 'texturemap';
sCloud.AlphaData = max(clouds,[],3);
hold off
view([80 2])

12 Transparency

12-14

daspect([1 1 1])
axis off tight

The images used in this example are from Visible Earth.

Credit: NASA Goddard Space Flight Center Image by Reto Stöckli (land surface, shallow water,
clouds). Enhancements by Robert Simmon (ocean color, compositing, 3D globes, animation). Data and
technical support: MODIS Land Group; MODIS Science Data Support Team; MODIS Atmosphere
Group; MODIS Ocean Group Additional data: USGS EROS Data Center (topography); USGS
Terrestrial Remote Sensing Flagstaff Field Center (Antarctica); Defense Meteorological Satellite
Program (city lights).

See Also
alpha | alphamap | alim

 Changing Transparency of Images, Patches or Surfaces

12-15

Modify the Alphamap

Every figure has an associated alphamap, which is a vector of values ranging from 0 to 1. The default
alphamap contains 64 values ranging linearly from 0 to 1. View or modify the alphamap using the
Alphamap property of the figure or using the alphamap function.

Default Alpha Map
The default alphamap contains 64 values ranging linearly from 0 to 1, as shown in the following plot.

am = get(gcf,'Alphamap');
plot(am)

This alphamap displays the lowest alpha data values as completely transparent and the highest alpha
data values as opaque.

The alphamap function creates some useful predefined alphamaps and also enables you to modify
existing maps. For example,

figure;
alphamap('vup')

sets the figure Alphamap property to an alphamap whose values increase then decrease:

12 Transparency

12-16

am = get(gcf,'Alphamap');
plot(am)

You can shift the values using the increase or decrease options. For example,

alphamap('increase',.4)

adds the value .4 to all values in the current figure's alphamap. Replotting the 'vup' alphamap
illustrates the change. The values are clamped to the range [0 1].

am = get(gcf,'Alphamap');
plot(am)

 Modify the Alphamap

12-17

Example — Modifying the Alphamap
This example uses slice planes to examine volume data. The slice planes use the color data for alpha
data and employ a rampdown alphamap (the values range from 1 to 0):

1 Create the volume data by evaluating a function of three variables.

[x,y,z] = meshgrid(-1.25:.1:-.25,-2:.2:2,-2:.1:2);
v = x.*exp(-x.^2-y.^2-z.^2);

2 Create the slice planes, set the alpha data equal to the color data, and specify interpolated
FaceColor and FaceAlpha.

h = slice(x,y,z,v,[-1 -.75 -.5],[],[0]);
set(h,'EdgeColor','none',...
'FaceColor','interp',...
'FaceAlpha','interp')
alpha('color')

3 Install the rampdown alphamap and increase each value in the alphamap by .1 to achieve the
desired degree of transparency. Specify the hsv colormap.

alphamap('rampdown')
alphamap('increase',.1)
colormap hsv

12 Transparency

12-18

This alphamap displays the smallest values of the function (around zero) with the least transparency
and the greatest values display with the most transparency. This enables you to see through the slice
planes, while at the same time preserving the data around zero.

See Also

Related Examples
• “Add Transparency to Graphics Objects” on page 12-2

 Modify the Alphamap

12-19

Data Exploration

• “Interactively Explore Plotted Data” on page 13-2
• “Create Custom Data Tips” on page 13-6
• “Automatically Refresh Plot After Changing Data” on page 13-9
• “Control Chart Interactivity” on page 13-12

13

Interactively Explore Plotted Data
You can interactively explore and edit plotted data to improve the visual display of the data or reveal
additional information about the data. The interactions available depend on the contents of the axes,
but typically include zooming, panning, rotating, data tips, data brushing, and restoring the original
view.

Some types of interactions are available through the axes toolbar. The toolbar appears at the top-
right corner of the axes when you hover over the chart area.

Other types of interactions are built into the axes and correspond to gestures, such as dragging to
pan or scrolling to zoom. These interactions are separate from those in the axes toolbar.

Note In R2018a and previous releases, the interaction options appear in the figure toolbar instead of
the axes toolbar. Also, in previous releases, none of the gesture-based interactions are built into the
axes.

Zoom, Pan, and Rotate Data
Zooming, panning, and rotating the axes let you explore different views of your data. By default, you
can scroll or pinch to zoom in and out of the view of the axes. Also, you can drag to pan (2-D view) or
drag to rotate (3-D view).

You can enable more interactions by clicking the zoom in , zoom out , pan , and rotate
buttons in the axes toolbar. For example, click the zoom-in button if you want to drag a rectangle to
zoom into a region of interest. When an interaction mode is enabled, interact with the axes by using
the mouse. Some modes support interacting with the axes by using the arrow keys or scroll wheel.

Display Data Values Using Data Tips
To identify the values of data points in your chart, create data tips. Data tips appear temporarily as
you hover over the data points in your chart. To display persistent (pinned) data tips, click one or

more data points. Alternatively, select the data tips button in the axes toolbar and then click a
data point. To pin multiple data tips using the data tips button, hold down the Shift key. To bring a
data tip in front of other data tips that overlap with it, click on it. For some charts, to move the
currently selected data tip to another data point, use the arrow keys.

13 Data Exploration

13-2

Note In MATLAB Online™, you might experience some differences in data tip interactivity. For
example, in some cases, you cannot click to bring a data tip in front of other data tips that overlap
with it.

Select and Modify Data Values Using Data Brushing
You can use data brushing to select, remove, or replace individual data values. To brush data, select

the data brushing button from the axes toolbar. Click a data point to highlight it or drag a
rectangle to highlight all the data points within the rectangle. Use the Shift key to highlight
additional data points.

After you highlight the desired data points, you can use the options in the right-click context menu to
remove, replace, or copy the values. The displayed plot shows your changes. Also, you see the
updates to the data properties of the plotted object update (such as XData). However, the original
workspace variables are not updated. Then, if you want to update the workspace variables as well,
you can use the Link option on the figure Tools menu to link the variables to the plot.

Remove Outliers from Plotted Data

This example shows how to use data brushing to delete an outlier from a plot of 100 data points.

First, plot the data containing a single outlier. Then, select the data brushing button from the axes
toolbar and drag a rectangle around the outlier.

 Interactively Explore Plotted Data

13-3

x = linspace(0,10);
y = exp(.1*x).*sin(3*x);
y(60) = 2.7;
plot(x,y)

Right-click the brushed data point and select Remove from the context menu. Notice that the plot
updates. However, the workspace variable does not change.

If you want to remove the point from the workspace variable, then select the Link option from the
figure Tools menu before brushing the data.

Customize Plots Using Property Inspector
You can modify plots interactively by using the Property Inspector. When you open the Property
Inspector and select a plot, the inspector displays a list of properties that you can edit. To open the
inspector, use the inspect function or click the Property Inspector button on the figure toolbar.

13 Data Exploration

13-4

See Also
brush | datacursormode | rotate3d | pan | zoom | linkdata | Property Inspector

More About
• “Automatically Refresh Plot After Changing Data” on page 13-9
• “Create Custom Data Tips” on page 13-6

 Interactively Explore Plotted Data

13-5

Create Custom Data Tips
Data tips appear when you hover over a data point. By default, the data tips include the data specified
during chart creation that correspond to the individual data point. However, for some types of charts,
you can customize the information that appears in the data tip, such as changing the labels or adding
new rows.

Charts that support these customizations have a DataTipTemplate property, for example, Line
objects created with the plot function.

Change Labels and Add Row

Modify the contents of data tips on a scatter plot. First, load sample accident data and create the
scatter plot. Then, create a data tip interactively or by using the datatip function. By default, data
tips show the coordinates of the data point.

load("accidents.mat","hwydata","statelabel","hwyidx")
s = scatter(hwydata(:,5),hwydata(:,4));
dt = datatip(s,11246.7,1493);

Change the data tip labels from X and Y to Drivers (in thousands) and Fatalities by
accessing the DataTipTemplate property of the plotted object and setting the Label property for
each row.

13 Data Exploration

13-6

s.DataTipTemplate.DataTipRows(1).Label = "Drivers (in thousands)";
s.DataTipTemplate.DataTipRows(2).Label = "Fatalities";

Add new rows to the data tip. For the labels, use State and Highway Index. For the values, use the
state names and highway indexes contained in the statelabel and hwyidx variables in your
workspace.

dtRows = [dataTipTextRow("State",statelabel),...
 dataTipTextRow("Highway Index",hwyidx)];
s.DataTipTemplate.DataTipRows(end+1:end+2) = dtRows;

Show Table Values in Data Tips

Modify the contents of data tips for a scatter plot to include additional values from a table. First,
create a table from a sample spreadsheet of patient data. Plot the data. Then, create a data tip
interactively or by using the datatip function.

tbl = readtable("patients.xls");
s = scatter(tbl,"Height","Weight");
dt = datatip(s,64,142);

Add a new row to the data tip that uses the label Age and shows the values from the Age column of
the table.

 Create Custom Data Tips

13-7

row = dataTipTextRow("Age",tbl.Age);
s.DataTipTemplate.DataTipRows(end+1) = row;

See Also
dataTipTextRow | DataTipTemplate | datatip

More About
• “Interactively Explore Plotted Data” on page 13-2
• “Automatically Refresh Plot After Changing Data” on page 13-9

13 Data Exploration

13-8

Automatically Refresh Plot After Changing Data
When you plot data from workspace variables, the plots contain copies of the variables. As a result, if
you change the workspace variable (such as add or delete data) the plots do not automatically
update. If you want the plot to reflect the change, you must replot it. However, you can use one of
these techniques to link plots to the workspace variables they represent. When you link plots and
workspace variables, changing the data in one place also changes it in the other.

• Use data linking to link the plot to workspace variables.
• Set the data source properties of the plotted object (such as the XDataSource property) to the

names of the workspace variables. Then, call the refreshdata function to update the data
properties indirectly. You can use this technique to create animations.

Update Plot Using Data Linking
Data linking keeps plots continuously synchronized with the workspace variables they depict.

For example, iteratively approximate pi. Create the variable x to represent the iteration number and
y to represent the approximation. Plot the initial values of x and y. Turn on data linking using
linkdata on so that the plot updates when the variables change. Then, update x and y in a for loop.
The plot updates at half-second intervals.

x = [1 2];
y = [4 4];
plot(x,y);
xlim([0 100])
ylim([2.5 4])
xlabel('Iteration')
ylabel('Approximation for \pi')

linkdata on

denom = 1;
k = -1;
for t = 3:100
 denom = denom + 2;
 x(t) = t;
 y(t) = 4*(y(t-1)/4 + k/denom);
 k = -k;
end

 Automatically Refresh Plot After Changing Data

13-9

Update Plot Using Data Source Properties
Instead of using the data linking feature, you can keep the plot synchronized with the workspace
variables by setting the data source properties of the plotted object. You can use this technique to
create animations.

For example, iteratively approximate pi. Create the variable x2 to represent the iteration number
and y2 to represent the approximation. Plot the initial values of x2 and y2. Link the plot to the
workspace variables by setting the data source properties of the plotted object to 'x2' and 'y2'.
Then, update x2 and y2 in a for loop. Call refreshdata and drawnow each iteration to update the
plot based on the updated data.

x2 = [1 2];
y2 = [4 4];
p = plot(x2,y2);
xlim([0 100])
ylim([2.5 4])
xlabel('Iteration')
ylabel('Approximation for \pi')

p.XDataSource = 'x2';
p.YDataSource = 'y2';

denom = 1;
k = -1;
for t = 3:100

13 Data Exploration

13-10

 denom = denom + 2;
 x2(t) = t;
 y2(t) = 4*(y2(t-1)/4 + k/denom);
 refreshdata
 drawnow
 k = -k;
end

See Also
linkdata | brush | refreshdata | linkaxes

More About
• “Interactively Explore Plotted Data” on page 13-2

 Automatically Refresh Plot After Changing Data

13-11

Control Chart Interactivity
You can interactively explore and edit plotted data to improve the visual display of the data or reveal
additional information about the data. The interactions available depend on the contents of the axes,
but typically include zooming, panning, rotating, data tips, data brushing, and restoring the original
view.

Some types of interactions are available through the axes toolbar. The toolbar appears at the top-
right corner of the axes when you hover over the chart area.

Other types of interactions are built into the axes and are available through gestures, such as
dragging to pan or scrolling to zoom. These interactions are controlled separately from those in the
axes toolbar.

When you create a chart, you can control the set of available interactions in several ways:

• Show or hide the axes toolbar on page 13-12.
• Customize the axes toolbar on page 13-12.
• Enable or disable built-in interactions on page 13-14.
• Customize the built-in interactions on page 13-14.

In R2018a and previous releases, many of the interaction options appear in the figure toolbar instead
of the axes toolbar. Also, in previous releases, none of the interactions are built into the axes.

Show or Hide Axes Toolbar
To show or hide the axes toolbar, set the Visible property of the AxesToolbar object to 'on' or
'off', respectively. For example, hide the toolbar for the current axes:

ax = gca;
ax.Toolbar.Visible = 'off';

Customize Axes Toolbar
You can customize the options available in the axes toolbar using the axtoolbar and axtoolbarbtn
functions.

For example, add a custom state button for the axes toolbar that turns on and off the axes grid lines.
First, create a program file called mycustomstatebutton.m. Within the program file:

• Plot random data.
• Create a toolbar for the axes with options to zoom in, zoom out, and restore the view using the

axtoolbar function.
• Add an empty state button to the toolbar using the axtoolbarbtn function. Return the

ToolbarStateButton object.
• Specify the icon, tool tip, and callback function for the state button by setting the Icon, Tooltip,

and ValueChangedFcn properties. This example uses the icon, which you must first save as an
image file called mygridicon.png on your path.

13 Data Exploration

13-12

When you run the program file, click the icon to turn on and off the grid lines.

function mycustomstatebutton

plot(rand(5))
ax = gca;
tb = axtoolbar(ax,{'zoomin','zoomout','restoreview'});

btn = axtoolbarbtn(tb,'state');
btn.Icon = 'mygridicon.png';
btn.Tooltip = 'Grid Lines';
btn.ValueChangedFcn = @customcallback;

 function customcallback(src,event)
 switch src.Value
 case 'off'
 event.Axes.XGrid = 'off';
 event.Axes.YGrid = 'off';
 event.Axes.ZGrid = 'off';
 case 'on'
 event.Axes.XGrid = 'on';
 event.Axes.YGrid = 'on';
 event.Axes.ZGrid = 'on';
 end
 end

end

 Control Chart Interactivity

13-13

Enable or Disable Built-In Interactions
To control whether a set of built-in interactions is enabled within a chart, use the
disableDefaultInteractivity and enableDefaultInteractivity functions. Sometimes
MATLAB automatically disables the built-in interactions. For example, they might be disabled for
charts that have special features, or when you implement certain callbacks such as a
WindowScrollWheelFcn callback.

Customize Built-In Interactions
Most types of axes include a default set of built-in interactions that correspond to specific gestures.
The interactions that are available depend on the contents of the axes. Most Cartesian axes include
interactions for scrolling to zoom, hovering or clicking to display data tips, and dragging to pan (in a
2-D view) or rotate (in a 3-D view). You can replace the default set with a new set of interactions, but
you cannot access or modify any of the interactions in the default set.

To replace the default interactions, set the Interactions property of the axes to an array of
interaction objects. Choose a compatible combination of interaction objects from the following table.
To delete all interactions from the axes, set the property to an empty array ([]).

Interaction
Object

Description Compatible Interactions

panInteraction Pan within a chart by dragging. All except regionZoomInteraction
and rotateInteraction

rulerPanIntera
ction

Pan an axis by dragging it. All

zoomInteractio
n

Zoom by scrolling or pinching. All

regionZoomInte
raction

Zoom into a rectangular region by
dragging.
(For 2-D Cartesian charts only)

All except panInteraction and
rotateInteraction

rotateInteract
ion

Rotate a chart by dragging it. All except panInteraction and
regionZoomInteraction

dataTipInterac
tion

Display data tips by hovering, clicking,
or tapping.

All

For example, create a plot containing 1000 scattered points.

x = 1:500;
y = randn(1,500);
y2 = 5*randn(1,500) + 10;
plot(x,y,'.',x,y2,'.')

13 Data Exploration

13-14

By default, this plot has a set of interactions that includes dragging to pan within the chart area.
However, because the plot has a dense collection of points, a more useful set of interactions might
include one that allows you to zoom into specific regions of the plot. The regionZoomInteraction
object provides this functionality. Replace the default set of interactions for the current axes with an
array that includes the regionZoomInteraction object.

ax = gca;
ax.Interactions = [zoomInteraction regionZoomInteraction rulerPanInteraction];

Now, dragging within the plot area defines a rectangular region of interest to zoom into.

 Control Chart Interactivity

13-15

See Also
Functions
axtoolbar

Properties
AxesToolbar | ToolbarPushButton | ToolbarStateButton | Axes

More About
• “Interactively Explore Plotted Data” on page 13-2

13 Data Exploration

13-16

Camera Views

• “View Overview” on page 14-2
• “Setting the Viewpoint with Azimuth and Elevation” on page 14-4
• “Camera Graphics Terminology” on page 14-8
• “View Control with the Camera Toolbar” on page 14-9
• “Dollying the Camera” on page 14-18
• “Moving the Camera Through a Scene” on page 14-19
• “Low-Level Camera Properties” on page 14-22
• “Understanding View Projections” on page 14-27

14

View Overview
In this section...
“Viewing 3-D Graphs and Scenes” on page 14-2
“Positioning the Viewpoint” on page 14-2
“Setting the Aspect Ratio” on page 14-2
“Default Views” on page 14-2

Viewing 3-D Graphs and Scenes
The view is the particular orientation you select to display your graph or graphical scene. The term
viewing refers to the process of displaying a graphical scene from various directions, zooming in or
out, changing the perspective and aspect ratio, flying by, and so on.

This section describes how to define the various viewing parameters to obtain the view you want.
Generally, viewing is applied to 3-D graphs or models, although you might want to adjust the aspect
ratio of 2-D views to achieve specific proportions or make a graph fit in a particular shape.

MATLAB viewing is composed of two basic areas:

• Positioning the viewpoint to orient the scene
• Setting the aspect ratio and relative axis scaling to control the shape of the objects being

displayed

Positioning the Viewpoint
• “Setting the Viewpoint with Azimuth and Elevation” on page 14-4 — Discusses how to specify

the point from which you view a graph in terms of azimuth and elevation. This is conceptually
simple, but does have limitations.

• “View Control with the Camera Toolbar” on page 14-9 — How to compose complex scenes using
the MATLAB camera viewing model.

• “Moving the Camera Through a Scene” on page 14-19 — Programming techniques for moving
the view around and through scenes.

• “Low-Level Camera Properties” on page 14-22 — The graphics properties that control the
camera and illustrates the effects they cause.

Setting the Aspect Ratio
• “Understanding View Projections” on page 14-27 — Describes orthographic and perspective

projection types and illustrates their use.
• “Manipulating Axes Aspect Ratio” on page 9-82 — How MATLAB sets the aspect ratio of the axes

and how you can select the most appropriate setting for your graphs.

Default Views
MATLAB automatically sets the view when you create a graph. The actual view that MATLAB selects
depends on whether you are creating a 2- or 3-D graph. See “Default Viewpoint Selection” on page

14 Camera Views

14-2

14-22 and “Default Aspect Ratio Selection” on page 9-83 for a description of how MATLAB defines
the standard view.

 View Overview

14-3

Setting the Viewpoint with Azimuth and Elevation

Azimuth and Elevation
You can control the orientation of the graphics displayed in an axes using MATLAB graphics
functions. You can specify the viewpoint, view target, orientation, and extent of the view displayed in
a figure window. These viewing characteristics are controlled by a set of graphics properties. You can
specify values for these properties directly or you can use the view command and rely on MATLAB
automatic property selection to define a reasonable view.

The view command specifies the viewpoint by defining azimuth and elevation with respect to the axis
origin. Azimuth is a polar angle in the x-y plane, with positive angles indicating counterclockwise
rotation of the viewpoint. Elevation is the angle above (positive angle) or below (negative angle) the
x-y plane.

This diagram illustrates the coordinate system. The arrows indicate positive directions.

Default 2-D and 3-D Views

MATLAB automatically selects a viewpoint that is determined by whether the plot is 2-D or 3-D:

• For 2-D plots, the default is azimuth = 0° and elevation = 90°.
• For 3-D plots, the default is azimuth = -37.5° and elevation = 30°.

Examples of Views Specified with Azimuth and Elevation

For example, these statements create a 3-D surface plot and display it in the default 3-D view.

[X,Y] = meshgrid([-2:.25:2]);
Z = X.*exp(-X.^2 -Y.^2);
surf(X,Y,Z)

14 Camera Views

14-4

The statement

view([180 0])

sets the viewpoint so you are looking in the negative y-direction with your eye at the z = 0 elevation.

 Setting the Viewpoint with Azimuth and Elevation

14-5

You can move the viewpoint to a location below the axis origin using a negative elevation.

view([-37.5 -30])

14 Camera Views

14-6

Limitations of Azimuth and Elevation

Specifying the viewpoint in terms of azimuth and elevation is conceptually simple, but it has
limitations. It does not allow you to specify the actual position of the viewpoint, just its direction, and
the z-axis is always pointing up. It does not allow you to zoom in and out on the scene or perform
arbitrary rotations and translations.

MATLAB camera graphics provides greater control than the simple adjustments allowed with azimuth
and elevation.

See Also

More About
• “Camera Graphics Terminology” on page 14-8
• “View Control with the Camera Toolbar” on page 14-9

 Setting the Viewpoint with Azimuth and Elevation

14-7

Camera Graphics Terminology

When you look at the graphics objects displayed in an axes, you are viewing a scene from a particular
location in space that has a particular orientation with regard to the scene. MATLAB Graphics
provides functionality, analogous to that of a camera with a zoom lens, that enables you to control the
view of the scene created by MATLAB.

This picture illustrates how the camera is defined in terms of properties of the axes. The view is the 2-
D projection of the plot box onto the screen.

See Also
camdolly | camlookat | camorbit | campan | camproj | camroll | camtarget | camup | camva |
camzoom

Related Examples
• “View Control with the Camera Toolbar” on page 14-9

14 Camera Views

14-8

View Control with the Camera Toolbar

In this section...
“Camera Toolbar” on page 14-9
“Camera Motion Controls” on page 14-11
“Orbit Camera” on page 14-11
“Orbit Scene Light” on page 14-12
“Pan/Tilt Camera” on page 14-12
“Move Camera Horizontally/Vertically” on page 14-13
“Move Camera Forward and Backward” on page 14-14
“Zoom Camera” on page 14-15
“Camera Roll” on page 14-16

Camera Toolbar
The Camera toolbar enables you to perform a number of viewing operations interactively. To use the
Camera toolbar,

• Display the toolbar by selecting Camera Toolbar from the figure window's View menu or by
typing cameratoolbar in the Command Window.

• Select the type of camera motion control you want to use by either clicking on the buttons or
changing the cameratoolbar mode in the Command Window.

• Position the cursor over the figure window and click, hold down the right mouse button, then
move the cursor in the desired direction.

The display updates immediately as you move the mouse.

The toolbar contains the following parts:

• Camera Motion Controls — These tools select which camera motion function to enable. You can
also access the camera motion controls from the Tools menu.

• Principal Axis Selector — Some camera controls operate with respect to a particular axis. These
selectors enable you to select the principal axis or to select nonaxis constrained motion. The
selectors are grayed out when not applicable to the currently selected function. You can also
access the principal axis selector from the Tools menu.

• Scene Light — The scene light button toggles a light source on or off in the scene (one light per
axes).

• Projection Type — You can select orthographic or perspective projection types.

 View Control with the Camera Toolbar

14-9

• Reset and Stop — Reset returns the scene to the view when interactions began. Stop causes the
camera to stop moving (this can be useful if you apply too much cursor movement). You can also
access an expanded set of reset functions from the Tools menu.

Principal Axes

The principal axis of a scene defines the direction that is oriented upward on the screen. For example,
a MATLAB surface plot aligns the up direction along the positive z-axis.

Principal axes constrain camera-tool motion along axes that are (on the screen) parallel and
perpendicular to the principal axis that you select. Specifying a principal axis is useful if your data is
defined with respect to a specific axis. Z is the default principal axis, because this matches the
MATLAB default 3-D view.

Two of the camera tools (Orbit and Pan/Tilt) allow you to select a principal axis as well as axis-free
motion. On the screen, the axes of rotation are determined by a vertical and a horizontal line, both of
which pass through the point defined by the CameraTarget property and are parallel and
perpendicular to the principal axis.

For example, when the principal axis is z, movement occurs about

• A vertical line that passes through the camera target and is parallel to the z-axis
• A horizontal line that passes through the camera target and is perpendicular to the z-axis

This means the scene (or camera, as the case may be) moves in an arc whose center is at the camera
target. The following picture illustrates the rotation axes for a z principal axis.

The axes of rotation always pass through the camera target.

Optimizing for 3-D Camera Motion

When you create a plot, MATLAB displays it with an aspect ratio that fits the figure window. This
behavior might not create an optimum situation for the manipulation of 3-D graphics, as it can lead to
distortion as you move the camera around the scene. To avoid possible distortion, it is best to switch
to a 3-D visualization mode (enabled from the command line with the command axis vis3d). When
using the Camera toolbar, MATLAB automatically switches to the 3-D visualization mode, but warns
you first with the following dialog box.

14 Camera Views

14-10

This dialog box appears only once per MATLAB session.

Camera Motion Controls

This section discusses the individual camera motion functions selectable from the toolbar.

Note When interpreting the following diagrams, keep in mind that the camera always points towards
the camera target. See “Camera Graphics Terminology” on page 14-8 for an illustration of the
graphics properties involved in camera motion.

Orbit Camera

Orbit Camera rotates the camera about the z-axis (by default). You can select x-, y-, z-, or free-axis
rotation using the Principal Axis Selectors. When using no principal axis, you can rotate about an
arbitrary axis.

Graphics Properties

Orbit Camera changes the CameraPosition property while keeping the CameraTarget fixed.

 View Control with the Camera Toolbar

14-11

Orbit Scene Light

The scene light is a light source that is placed with respect to the camera position. By default, the
scene light is positioned to the right of the camera (i.e., camlight right). Orbit Scene Light
changes the light's offset from the camera position. There is only one scene light; however, you can
add other lights using the light command.

Toggle the scene light on and off by clicking the yellow light bulb icon.

Graphics Properties

Orbit Scene Light moves the scene light by changing the light's Position property.

Pan/Tilt Camera

Pan/Tilt Camera moves the point in the scene that the camera points to while keeping the camera
fixed. The movement occurs in an arc about the z-axis by default. You can select x-, y-, z-, or free-axis
rotation using the Principal Axes Selectors.

14 Camera Views

14-12

Graphics Properties

Pan/Tilt Camera moves the point in the scene that the camera is pointing to by changing the
CameraTarget property.

Move Camera Horizontally/Vertically

Moving the cursor horizontally or vertically (or any combination of the two) moves the scene in the
same direction.

Graphics Properties

The horizontal and vertical movement is achieved by moving the CameraPosition and the
CameraTarget in unison along parallel lines.

 View Control with the Camera Toolbar

14-13

Move Camera Forward and Backward

Moving the cursor up or to the right moves the camera toward the scene. Moving the cursor down or
to the left moves the camera away from the scene. It is possible to move the camera through objects
in the scene and to the other side of the camera target.

Graphics Properties

This function moves the CameraPosition along the line connecting the camera position and the
camera target.

14 Camera Views

14-14

Zoom Camera

Zoom Camera makes the scene larger as you move the cursor up or to the right and smaller as you
move the cursor down or to the left. Zooming does not move the camera and therefore cannot move
the viewpoint through objects in the scene.

Graphics Properties

Zoom is implemented by changing the CameraViewAngle. The larger the angle, the smaller the
scene appears, and vice versa.

 View Control with the Camera Toolbar

14-15

Camera Roll

Camera Roll rotates the camera about the viewing axis, thereby rotating the view on the screen.

Graphics Properties

Camera Roll changes the CameraUpVector.

14 Camera Views

14-16

 View Control with the Camera Toolbar

14-17

Dollying the Camera

In this section...
“Summary of Techniques” on page 14-18
“Implementation” on page 14-18

Summary of Techniques
In the camera metaphor, a dolly is a stage that enables movement of the camera from side to side
with respect to the scene. The camdolly command implements similar behavior by moving both the
position of the camera and the position of the camera target in unison (or just the camera position if
you so desire).

This example illustrates how to use camdolly to explore different regions of an image. It shows how
to use the following functions:

• ginput to obtain the coordinates of locations on the image
• The camdolly data coordinates option to move the camera and target to the new position based

on coordinates obtained from ginput
• camva to zoom in and to fix the camera view angle, which is otherwise under automatic control

Implementation
First load the Cape Cod image and zoom in by setting the camera view angle (using camva).

load cape
image(X)
colormap(map)
axis image
camva(camva/2.5)

Then use ginput to select the x- and y-coordinates of the camera target and camera position.

while 1
 [x,y] = ginput(1);
 if ~strcmp(get(gcf,'SelectionType'),'normal')
 break
 end
 ct = camtarget;
 dx = x - ct(1);
 dy = y - ct(2);
 camdolly(dx,dy,ct(3),'movetarget','data')
 drawnow
end

14 Camera Views

14-18

Moving the Camera Through a Scene

In this section...
“Summary of Techniques” on page 14-19
“Graph the Volume Data” on page 14-19
“Set the View” on page 14-20
“Specify the Light Source” on page 14-20
“Select the Lighting Method” on page 14-20
“Define the Camera Path as a Stream Line” on page 14-20
“Implement the Fly-Through” on page 14-21

Summary of Techniques
A fly-through is an effect created by moving the camera through three-dimensional space, giving the
impression that you are flying along with the camera as if in an aircraft. You can fly through regions
of a scene that might be otherwise obscured by objects in the scene or you can fly by a scene by
keeping the camera focused on a particular point.

To accomplish these effects you move the camera along a particular path, the x-axis for example, in a
series of steps. To produce a fly-through, move both the camera position and the camera target at the
same time.

The following example makes use of the fly-though effect to view the interior of an isosurface drawn
within a volume defined by a vector field of wind velocities. This data represents air currents over
North America.

This example employs a number of visualization techniques. It uses

• Isosurfaces and cone plots to illustrate the flow through the volume
• Lighting to illuminate the isosurface and cones in the volume
• Stream lines to define a path for the camera through the volume
• Coordinated motion of the camera position, camera target, and light

Graph the Volume Data
The first step is to draw the isosurface and plot the air flow using cone plots.

See isosurface, isonormals, reducepatch, and coneplot for information on using these
commands.

Setting the data aspect ratio (daspect) to [1,1,1] before drawing the cone plot enables MATLAB
software to calculate the size of the cones correctly for the final view.

load wind
wind_speed = sqrt(u.^2 + v.^2 + w.^2);
figure
p = patch(isosurface(x,y,z,wind_speed,35));
isonormals(x,y,z,wind_speed,p)

 Moving the Camera Through a Scene

14-19

p.FaceColor = [0.75,0.25,0.25];
p.EdgeColor = [0.6,0.4,0.4];

[f,vt] = reducepatch(isosurface(x,y,z,wind_speed,45),0.05);
daspect([1,1,1]);
hcone = coneplot(x,y,z,u,v,w,vt(:,1),vt(:,2),vt(:,3),2);
hcone.FaceColor = 'blue';
hcone.EdgeColor = 'none';

Set the View
You need to define viewing parameters to ensure the scene is displayed correctly:

• Selecting a perspective projection provides the perception of depth as the camera passes through
the interior of the isosurface (camproj).

• Setting the camera view angle to a fixed value prevents MATLAB from automatically adjusting the
angle to encompass the entire scene as well as zooming in the desired amount (camva).

camproj perspective
camva(25)

Specify the Light Source
Positioning the light source at the camera location and modifying the reflectance characteristics of
the isosurface and cones enhances the realism of the scene:

• Creating a light source at the camera position provides a "headlight" that moves along with the
camera through the isosurface interior (camlight).

• Setting the reflection properties of the isosurface gives the appearance of a dark interior
(AmbientStrength set to 0.1) with highly reflective material (SpecularStrength and
DiffuseStrength set to 1).

• Setting the SpecularStrength of the cones to 1 makes them highly reflective.

hlight = camlight('headlight');
p.AmbientStrength = 1;
p.SpecularStrength = 1;
p.DiffuseStrength = 1;
hcone.SpecularStrength = 1;
set(gcf,'Color','k')
set(gca,'Color',[0,0,0.25])

Select the Lighting Method
Use gouraud lighting for smoother lighting:

lighting gouraud

Define the Camera Path as a Stream Line
Stream lines indicate the direction of flow in the vector field. This example uses the x-, y-, and z-
coordinate data of a single stream line to map a path through the volume. The camera is then moved
along this path. The tasks include

14 Camera Views

14-20

• Create a stream line starting at the point x = 80, y = 30, z = 11.
• Get the x-, y-, and z-coordinate data of the stream line.
• Delete the stream line (you could also use stream3 to calculate the stream line data without

actually drawing the stream line).

hsline = streamline(x,y,z,u,v,w,80,30,11);
xd = hsline.XData;
yd = hsline.YData;
zd = hsline.ZData;
delete(hsline)

Implement the Fly-Through
To create a fly-through, move the camera position and camera target along the same path. In this
example, the camera target is placed five elements further along the x-axis than the camera. A small
value is added to the camera target x position to prevent the position of the camera and target from
becoming the same point if the condition xd(n) = xd(n+5) should occur:

• Update the camera position and camera target so that they both move along the coordinates of the
stream line.

• Move the light along with the camera.
• Call drawnow to display the results of each move.

for i=1:length(xd)-5
 campos([xd(i),yd(i),zd(i)])
 camtarget([xd(i+5)+min(xd)/500,yd(i),zd(i)])
 camlight(hlight,'headlight')
 drawnow
end

See coneplot for a fixed visualization of the same data.

 Moving the Camera Through a Scene

14-21

Low-Level Camera Properties

In this section...
“Camera Properties You Can Set” on page 14-22
“Default Viewpoint Selection” on page 14-22
“Moving In and Out on the Scene” on page 14-23
“Making the Scene Larger or Smaller” on page 14-24
“Revolving Around the Scene” on page 14-24
“Rotation Without Resizing” on page 14-25
“Rotation About the Viewing Axis” on page 14-25

Camera Properties You Can Set
Camera graphics is based on a group of axes properties that control the position and orientation of
the camera. In general, the camera commands, such as campos, camtarget, and camup, make it
unnecessary to access these properties directly.

Property Description
CameraPosition Specifies the location of the viewpoint in axes units.
CameraPositionMode In automatic mode, the scene determines the position. In manual

mode, you specify the viewpoint location.
CameraTarget Specifies the location in the axes pointed to by the camera. Together

with the CameraPosition, it defines the viewing axis.
CameraTargetMode In automatic mode, MATLAB specifies the CameraTarget as the

center of the axes plot box. In manual mode, you specify the location.
CameraUpVector The rotation of the camera around the viewing axis is defined by a

vector indicating the direction taken as up.
CameraUpVectorMode In automatic mode, MATLAB orients the up vector along the positive

y-axis for 2-D views and along the positive z-axis for 3-D views. In
manual mode, you specify the direction.

CameraViewAngle Specifies the field of view of the "lens." If you specify a value for
CameraViewAngle, MATLAB does not stretch-the axes to fit the figure.

CameraViewAngleMode In automatic mode, MATLAB adjusts the view angle to the smallest
angle that captures the entire scene. In manual mode, you specify the
angle.

Setting CameraViewAngleMode to manual overrides stretch-to-fill
behavior.

Projection Selects either an orthographic or perspective projection.

Default Viewpoint Selection
When all the camera mode properties are set to auto (the default), MATLAB automatically controls
the view, selecting appropriate values based on the assumption that you want the scene to fill the

14 Camera Views

14-22

position rectangle (which is defined by the width and height components of the axes Position
property).

By default, MATLAB

• Sets the CameraPosition so the orientation of the scene is the standard MATLAB 2-D or 3-D
view (see the view command)

• Sets the CameraTarget to the center of the plot box
• Sets the CameraUpVector so the y-direction is up for 2-D views and the z-direction is up for 3-D

views
• Sets the CameraViewAngle to the minimum angle that makes the scene fill the position rectangle

(the rectangle defined by the axes Position property)
• Uses orthographic projection

This default behavior generally produces desirable results. However, you can change these properties
to produce useful effects.

Moving In and Out on the Scene
You can move the camera anywhere in the 3-D space defined by the axes. The camera continues to
point towards the target regardless of its position. When the camera moves, MATLAB varies the
camera view angle to ensure the scene fills the position rectangle.

Moving Through a Scene

You can create a fly-by effect by moving the camera through the scene. To do this, continually change
CameraPosition property, moving it toward the target. Because the camera is moving through
space, it turns as it moves past the camera target. Override the MATLAB automatic resizing of the
scene each time you move the camera by setting the CameraViewAngleMode to manual.

If you update the CameraPosition and the CameraTarget, the effect is to pass through the scene
while continually facing the direction of movement.

If the Projection is set to perspective, the amount of perspective distortion increases as the
camera gets closer to the target and decreases as it gets farther away.

Example — Moving Toward or Away from the Target

To move the camera along the viewing axis, you need to calculate new coordinates for the
CameraPosition property. This is accomplished by subtracting (to move closer to the target) or
adding (to move away from the target) some fraction of the total distance between the camera
position and the camera target.

The function movecamera calculates a new CameraPosition that moves in on the scene if the
argument dist is positive and moves out if dist is negative.

function movecamera(dist) %dist in the range [-1 1]
set(gca,'CameraViewAngleMode','manual')
newcp = cpos - dist * (cpos - ctarg);
set(gca,'CameraPosition',newcp)
function out = cpos
out = get(gca,'CameraPosition');
function out = ctarg
out = get(gca,'CameraTarget');

 Low-Level Camera Properties

14-23

Setting the CameraViewAngleMode to manual can cause an abrupt change in the aspect ratio.

Making the Scene Larger or Smaller
Adjusting the CameraViewAngle property makes the view of the scene larger or smaller. Larger
angles cause the view to encompass a larger area, thereby making the objects in the scene appear
smaller. Similarly, smaller angles make the objects appear larger.

Changing CameraViewAngle makes the scene larger or smaller without affecting the position of the
camera. This is desirable if you want to zoom in without moving the viewpoint past objects that will
then no longer be in the scene (as could happen if you changed the camera position). Also, changing
the CameraViewAngle does not affect the amount of perspective applied to the scene, as changing
CameraPosition does when the figure Projection property is set to perspective.

Revolving Around the Scene
You can use the view command to revolve the viewpoint about the z-axis by varying the azimuth, and
about the azimuth by varying the elevation. This has the effect of moving the camera around the
scene along the surface of a sphere whose radius is the length of the viewing axis. You could create
the same effect by changing the CameraPosition, but doing so requires you to perform calculations
that MATLAB performs for you when you call view.

For example, the function orbit moves the camera around the scene.

function orbit(deg)
[az, el] = view;
rotvec = 0:deg/10:deg;
for i = 1:length(rotvec)
 view([az+rotvec(i) el])

14 Camera Views

14-24

 drawnow
end

Rotation Without Resizing
When CameraViewAngleMode is auto, MATLAB calculates the CameraViewAngle so that the scene
is as large as can fit in the axes position rectangle. This causes an apparent size change during
rotation of the scene. To prevent resizing during rotation, you need to set the
CameraViewAngleMode to manual (which happens automatically when you specify a value for the
CameraViewAngle property). To do this in the orbit function, add the statement

set(gca,'CameraViewAngleMode','manual')

Rotation About the Viewing Axis
You can change the orientation of the scene by specifying the direction defined as up. By default,
MATLAB defines up as the y-axis in 2-D views (the CameraUpVector is [0 1 0]) and the z-axis for
3-D views (the CameraUpVector is [0 0 1]). However, you can specify up as any arbitrary
direction.

The vector defined by the CameraUpVector property forms one axis of the camera's coordinate
system. Internally, MATLAB determines the actual orientation of the camera up vector by projecting
the specified vector onto the plane that is normal to the camera direction (i.e., the viewing axis). This
simplifies the specification of the CameraUpVector property, because it need not lie in this plane.

In many cases, you might find it convenient to visualize the desired up vector in terms of angles with
respect to the axes x-, y-, and z-axis. You can then use direction cosines to convert from angles to
vector components. For a unit vector, the expression simplifies to

where the angles α, β, and γ are specified in degrees.

XComponent = cos(α*(pi/180));

YComponent = cos(β*(pi/180));

ZComponent = cos(γ*(pi/180));

Consult a mathematics book on vector analysis for a more detailed explanation of direction cosines.

 Low-Level Camera Properties

14-25

Calculating a Camera Up Vector

To specify an up vector that makes an angle of 30° with the z-axis and lies in the y-z plane, use the
expression

upvec = [cos(90*(pi/180)),cos(60*(pi/180)),cos(30*(pi/180))];

and then set the CameraUpVector property.

set(gca,'CameraUpVector',upvec)

Drawing a sphere with this orientation produces

14 Camera Views

14-26

Understanding View Projections

In this section...
“Two Types of Projections” on page 14-27
“Projection Types and Camera Location” on page 14-28

Two Types of Projections
MATLAB Graphics supports both orthographic and perspective projection types for displaying 3-D
graphics. The one you select depends on the type of graphics you are displaying:

• orthographic projects the viewing volume as a rectangular parallelepiped (i.e., a box whose
opposite sides are parallel). Relative distance from the camera does not affect the size of objects.
This projection type is useful when it is important to maintain the actual size of objects and the
angles between objects.

• perspective projects the viewing volume as the frustum of a pyramid (a pyramid whose apex
has been cut off parallel to the base). Distance causes foreshortening; objects further from the
camera appear smaller. This projection type is useful when you want to display realistic views of
real objects.

By default, MATLAB displays objects using orthographic projection. You can set the projection type
using the camproj command.

These pictures show a drawing of a dump truck (created with patch) and a surface plot of a
mathematical function, both using orthographic projection.

If you measure the width of the front and rear faces of the box enclosing the dump truck, you'll see
they are the same size. This picture looks unnatural because it lacks the apparent perspective you see
when looking at real objects with depth. On the other hand, the surface plot accurately indicates the
values of the function within rectangular space.

Now look at the same graphics objects with perspective added. The dump truck looks more natural
because portions of the truck that are farther from the viewer appear smaller. This projection mimics
the way human vision works. The surface plot, on the other hand, looks distorted.

 Understanding View Projections

14-27

Projection Types and Camera Location
By default, MATLAB adjusts the CameraPosition, CameraTarget, and CameraViewAngle
properties to point the camera at the center of the scene and to include all graphics objects in the
axes. If you position the camera so that there are graphics objects behind the camera, the scene
displayed can be affected by both the axes Projection property and the figure Renderer property.
The following summarizes the interactions between projection type and rendering method.

 Orthographic Perspective
OpenGL® CameraViewAngle determines extent of

scene at CameraTarget.
CameraViewAngle determines extent of
scene from CameraPosition to infinity.

Painters All objects are displayed regardless of
CameraPosition.

Not recommended if graphics objects are
behind the CameraPosition.

This diagram illustrates what you see (gray area) when using orthographic projection and OpenGL.
Anything in front of the camera is visible.

In perspective projection, you see only what is visible in the cone of the camera view angle.

14 Camera Views

14-28

Painters rendering method is less suited to moving the camera in 3-D space because MATLAB does
not clip along the viewing axis. Orthographic projection in painters method results in all objects
contained in the scene being visible regardless of the camera position.

Printing 3-D Scenes

The same effects described in the previous section occur in hardcopy output. You should specify
opengl printing explicitly to obtain the results displayed on the screen (use the -opengl option with
the print command).

 Understanding View Projections

14-29

Displaying Bit-Mapped Images

• “Working with Images in MATLAB Graphics” on page 15-2
• “Image Types” on page 15-4
• “8-Bit and 16-Bit Images” on page 15-8
• “Read, Write, and Query Image Files” on page 15-14
• “Displaying Graphics Images” on page 15-17
• “The Image Object and Its Properties” on page 15-21
• “Printing Images” on page 15-27
• “Convert Image Graphic or Data Type” on page 15-28
• “Displaying Image Data” on page 15-29
• “Create and Compare Resizing Interpolation Kernels” on page 15-32

15

Working with Images in MATLAB Graphics
In this section...
“What Is Image Data?” on page 15-2
“Supported Image Formats” on page 15-3

What Is Image Data?
The basic MATLAB data structure is the array, an ordered set of real or complex elements. An array
is naturally suited to the representation of images, real-valued, ordered sets of color or intensity data.
(An array is suited for complex-valued images.)

In the MATLAB workspace, most images are represented as two-dimensional arrays (matrices), in
which each element of the matrix corresponds to a single pixel in the displayed image. For example,
an image composed of 200 rows and 300 columns of different colored dots stored as a 200-by-300
matrix. Some images, such as RGB, require a three-dimensional array, where the first plane in the
third dimension represents the red pixel intensities, the second plane represents the green pixel
intensities, and the third plane represents the blue pixel intensities.

This convention makes working with graphics file format images similar to working with any other
type of matrix data. For example, you can select a single pixel from an image matrix using normal
matrix subscripting:

I(2,15)

This command returns the value of the pixel at row 2, column 15 of the image I.

The following sections describe the different data and image types, and give details about how to
read, write, work with, and display graphics images; how to alter the display properties and aspect
ratio of an image during display; how to print an image; and how to convert the data type or graphics
format of an image.

Data Types

MATLAB math supports three different numeric classes for image display:

• double-precision floating-point (double)
• 16-bit unsigned integer (uint16)
• 8-bit unsigned integer (uint8)

The image display commands interpret data values differently depending on the numeric class the
data is stored in. “8-Bit and 16-Bit Images” on page 15-8 includes details on the inner workings of
the storage for 8- and 16-bit images.

By default, most data occupy arrays of class double. The data in these arrays is stored as double-
precision (64-bit) floating-point numbers. All MATLAB functions and capabilities work with these
arrays.

For images stored in one of the graphics file formats supported by MATLAB functions, however, this
data representation is not always ideal. The number of pixels in such an image can be very large; for
example, a 1000-by-1000 image has a million pixels. Since at least one array element represents each
pixel , this image requires about 8 megabytes of memory if it is stored as class double.

15 Displaying Bit-Mapped Images

15-2

To reduce memory requirements, you can store image data in arrays of class uint8 and uint16. The
data in these arrays is stored as 8-bit or 16-bit unsigned integers. These arrays require one-eighth or
one-fourth as much memory as data in double arrays.

Bit Depth

MATLAB input functions read the most commonly used bit depths (bits per pixel) of any of the
supported graphics file formats. When the data is in memory, it can be stored as uint8, uint16, or
double. For details on which bit depths are appropriate for each supported format, see imread and
imwrite.

Supported Image Formats
MATLAB commands read, write, and display several types of graphics file formats for images. As with
MATLAB generated images, once a graphics file format image is displayed, it becomes an image
object. MATLAB supports the following graphics file formats, along with others:

• BMP (Microsoft® Windows® Bitmap)
• GIF (Graphics Interchange Files)
• HDF (Hierarchical Data Format)
• JPEG (Joint Photographic Experts Group)
• PCX (Paintbrush)
• PNG (Portable Network Graphics)
• TIFF (Tagged Image File Format)
• XWD (X Window Dump)

For more information about the bit depths and image types supported for these formats, see imread
and imwrite.

 Working with Images in MATLAB Graphics

15-3

Image Types
In this section...
“Indexed Images” on page 15-4
“Grayscale (Intensity) Images” on page 15-5
“RGB (Truecolor) Images” on page 15-6

Indexed Images
An indexed image consists of a data matrix, X, and a colormap matrix, map. map is an m-by-3 array of
class double containing floating-point values in the range [0, 1]. Each row of map specifies the red,
green, and blue components of a single color. An indexed image uses “direct mapping” of pixel values
to colormap values. The color of each image pixel is determined by using the corresponding value of
X as an index into map. Values of X therefore must be integers. The value 1 points to the first row in
map, the value 2 points to the second row, and so on. Display an indexed image with the statements

image(X); colormap(map)

A colormap is often stored with an indexed image and is automatically loaded with the image when
you use the imread function. However, you are not limited to using the default colormap—use any
colormap that you choose. The description for the property CDataMapping describes how to alter the
type of mapping used.

The next figure illustrates the structure of an indexed image. The pixels in the image are represented
by integers, which are pointers (indices) to color values stored in the colormap.

The relationship between the values in the image matrix and the colormap depends on the class of
the image matrix. If the image matrix is of class double, the value 1 points to the first row in the
colormap, the value 2 points to the second row, and so on. If the image matrix is of class uint8 or
uint16, there is an offset—the value 0 points to the first row in the colormap, the value 1 points to

15 Displaying Bit-Mapped Images

15-4

the second row, and so on. The offset is also used in graphics file formats to maximize the number of
colors that can be supported. In the preceding image, the image matrix is of class double. Because
there is no offset, the value 5 points to the fifth row of the colormap.

Grayscale (Intensity) Images
A grayscale image, sometimes referred to as an intensity image, is a data matrix I whose values
represent intensities within some range. A grayscale image is represented as a single matrix, with
each element of the matrix corresponding to one image pixel. The matrix can be of class double,
uint8, or uint16. While grayscale images are rarely saved with a colormap, a colormap is still used
to display them. In essence, grayscale images are treated as indexed images.

This figure depicts a grayscale image of class double.

To display a grayscale image, use the imagesc (“image scale”) function, which enables you to set the
range of intensity values. imagesc scales the image data to use the full colormap. Use the two-input
form of imagesc to display a grayscale image, for example:

imagesc(I,[0 1]); colormap(gray);

The second input argument to imagesc specifies the desired intensity range. The imagesc function
displays I by mapping the first value in the range (usually 0) to the first colormap entry, and the
second value (usually 1) to the last colormap entry. Values in between are linearly distributed
throughout the remaining colormap colors.

Although it is conventional to display grayscale images using a grayscale colormap, it is possible to
use other colormaps. For example, the following statements display the grayscale image I in shades
of blue and green:

imagesc(I,[0 1]); colormap(winter);

To display a matrix A with an arbitrary range of values as a grayscale image, use the single-argument
form of imagesc. With one input argument, imagesc maps the minimum value of the data matrix to

 Image Types

15-5

the first colormap entry, and maps the maximum value to the last colormap entry. For example, these
two lines are equivalent:

imagesc(A); colormap(gray)
imagesc(A,[min(A(:)) max(A(:))]); colormap(gray)

RGB (Truecolor) Images

An RGB image, sometimes referred to as a truecolor image, is stored as an m-by-n-by-3 data array
that defines red, green, and blue color components for each individual pixel. RGB images do not use a
palette. The color of each pixel is determined by the combination of the red, green, and blue
intensities stored in each color plane at the pixel's location. Graphics file formats store RGB images
as 24-bit images, where the red, green, and blue components are 8 bits each. This yields a potential
of 16 million colors. The precision with which a real-life image can be replicated has led to the
nickname “truecolor image.”

An RGB MATLAB array can be of class double, uint8, or uint16. In an RGB array of class double,
each color component is a value between 0 and 1. A pixel whose color components are (0,0,0) is
displayed as black, and a pixel whose color components are (1,1,1) is displayed as white. The three
color components for each pixel are stored along the third dimension of the data array. For example,
the red, green, and blue color components of the pixel (10,5) are stored in RGB(10,5,1),
RGB(10,5,2), and RGB(10,5,3), respectively.

To display the truecolor image RGB, use the image function:

image(RGB)

The next figure shows an RGB image of class double.

15 Displaying Bit-Mapped Images

15-6

To determine the color of the pixel at (2,3), look at the RGB triplet stored in (2,3,1:3). Suppose (2,3,1)
contains the value 0.5176, (2,3,2) contains 0.1608, and (2,3,3) contains 0.0627. The color for the
pixel at (2,3) is

0.5176 0.1608 0.0627

 Image Types

15-7

8-Bit and 16-Bit Images

In this section...
“Indexed Images” on page 15-8
“Intensity Images” on page 15-9
“RGB Images” on page 15-9
“Mathematical Operations Support for uint8 and uint16” on page 15-9
“Other 8-Bit and 16-Bit Array Support” on page 15-10
“Converting an 8-Bit RGB Image to Grayscale” on page 15-10
“Summary of Image Types and Numeric Classes” on page 15-12

Indexed Images
Double-precision (64-bit) floating-point numbers are the default MATLAB representation for numeric
data. However, to reduce memory requirements for working with images, you can store images as 8-
bit or 16-bit unsigned integers using the numeric classes uint8 or uint16, respectively. An image
whose data matrix has class uint8 is called an 8-bit image; an image whose data matrix has class
uint16 is called a 16-bit image.

The image function can display 8- or 16-bit images directly without converting them to double
precision. However, image interprets matrix values slightly differently when the image matrix is
uint8 or uint16. The specific interpretation depends on the image type.

If the class of X is uint8 or uint16, its values are offset by 1 before being used as colormap indices.
The value 0 points to the first row of the colormap, the value 1 points to the second row, and so on.
The image command automatically supplies the proper offset, so the display method is the same
whether X is double, uint8, or uint16:

image(X); colormap(map);

The colormap index offset for uint8 and uint16 data is intended to support standard graphics file
formats, which typically store image data in indexed form with a 256-entry colormap. The offset
allows you to manipulate and display images of this form using the more memory-efficient uint8 and
uint16 arrays.

Because of the offset, you must add 1 to convert a uint8 or uint16 indexed image to double. For
example:

X64 = double(X8) + 1;
 or
X64 = double(X16) + 1;

Conversely, subtract 1 to convert a double indexed image to uint8 or uint16:

X8 = uint8(X64 - 1);
 or
X16 = uint16(X64 - 1);

15 Displaying Bit-Mapped Images

15-8

Intensity Images
The range of double image arrays is usually [0, 1], but the range of 8-bit intensity images is usually
[0, 255] and the range of 16-bit intensity images is usually [0, 65535]. Use the following command to
display an 8-bit intensity image with a grayscale colormap:

imagesc(I,[0 255]); colormap(gray);

To convert an intensity image from double to uint16, first multiply by 65535:

I16 = uint16(round(I64*65535));

Conversely, divide by 65535 after converting a uint16 intensity image to double:

I64 = double(I16)/65535;

RGB Images
The color components of an 8-bit RGB image are integers in the range [0, 255] rather than floating-
point values in the range [0, 1]. A pixel whose color components are (255,255,255) is displayed as
white. The image command displays an RGB image correctly whether its class is double, uint8, or
uint16:

image(RGB);

To convert an RGB image from double to uint8, first multiply by 255:

RGB8 = uint8(round(RGB64*255));

Conversely, divide by 255 after converting a uint8 RGB image to double:

RGB64 = double(RGB8)/255

To convert an RGB image from double to uint16, first multiply by 65535:

RGB16 = uint16(round(RGB64*65535));

Conversely, divide by 65535 after converting a uint16 RGB image to double:

RGB64 = double(RGB16)/65535;

Mathematical Operations Support for uint8 and uint16
To use the following MATLAB functions with uint8 and uint16 data, first convert the data to type
double:

• conv2
• convn
• fft2
• fftn

For example, if X is a uint8 image, cast the data to type double:

fft(double(X))

 8-Bit and 16-Bit Images

15-9

In these cases, the output is always double.

The sum function returns results in the same type as its input, but provides an option to use double
precision for calculations.

MATLAB Integer Mathematics

See “Arithmetic Operations on Integer Classes” for more information on how mathematical functions
work with data types that are not doubles.

Most Image Processing Toolbox™ functions accept uint8 and uint16 input. If you plan to do
sophisticated image processing on uint8 or uint16 data, consider including that toolbox in your
MATLAB computing environment.

Other 8-Bit and 16-Bit Array Support
You can perform several other operations on uint8 and uint16 arrays, including:

• Reshaping, reordering, and concatenating arrays using the functions reshape, cat, permute,
and the [] and ' operators

• Saving and loading uint8 and uint16 arrays in MAT-files using save and load. (Remember that
if you are loading or saving a graphics file format image, you must use the commands imread and
imwrite instead.)

• Locating the indices of nonzero elements in uint8 and uint16 arrays using find. However, the
returned array is always of class double.

• Relational operators

Converting an 8-Bit RGB Image to Grayscale
You can perform arithmetic operations on integer data, which enables you to convert image types
without first converting the numeric class of the image data.

This example reads an 8-bit RGB image into a MATLAB variable and converts it to a grayscale image:

rgb_img = imread('ngc6543a.jpg'); % Load the image
image(rgb_img) % Display the RGB image

axis image;

15 Displaying Bit-Mapped Images

15-10

Note This image was created with the support of the Space Telescope Science Institute, operated by
the Association of Universities for Research in Astronomy, Inc., from NASA contract NAs5-26555, and
is reproduced with permission from AURA/STScI. Digital renditions of images produced by AURA/
STScI are obtainable royalty-free. Credits: J.P. Harrington and K.J. Orkowski (University of Maryland),
and NASA.

Calculate the monochrome luminance by combining the RGB values according to the NTSC standard,
which applies coefficients related to the eye's sensitivity to RGB colors:

I = .2989*rgb_img(:,:,1)...
 +.5870*rgb_img(:,:,2)...
 +.1140*rgb_img(:,:,3);

I is an intensity image with integer values ranging from a minimum of zero:

min(I(:))
ans =
 0

to a maximum of 255:

max(I(:))
ans =
 255

 8-Bit and 16-Bit Images

15-11

To display the image, use a grayscale colormap with 256 values. This avoids the need to scale the
data-to-color mapping, which is required if you use a colormap of a different size. Use the imagesc
function in cases where the colormap does not contain one entry for each data value.

Now display the image in a new figure using the gray colormap:

figure; colormap(gray(256)); image(I);
axis image;

Related Information

Other colormaps with a range of colors that vary continuously from dark to light can produce usable
images. For example, try colormap(summer(256)) for a classic oscilloscope look. See colormap
for more choices.

The brighten function enables you to increase or decrease the color intensities in a colormap to
compensate for computer display differences or to enhance the visibility of faint or bright regions of
the image (at the expense of the opposite end of the range).

Summary of Image Types and Numeric Classes

This table summarizes how data matrix elements are interpreted as pixel colors, depending on the
image type and data class.

15 Displaying Bit-Mapped Images

15-12

Image Type double Data uint8 or uint16 Data
Indexed Image is an m-by-n array of integers in

the range [1, p].

Colormap is a p-by-3 array of floating-
point values in the range [0, 1].

Image is an m-by-n array of integers in
the range [0, p –1].

Colormap is a p-by-3 array of floating-
point values in the range [0, 1].

Intensity Image is an m-by-n array of floating-
point values that are linearly scaled to
produce colormap indices. The typical
range of values is [0, 1].

Colormap is a p-by-3 array of floating-
point values in the range [0, 1] and is
typically grayscale.

Image is an m-by-n array of integers
that are linearly scaled to produce
colormap indices. The typical range of
values is [0, 255] or [0, 65535].

Colormap is a p-by-3 array of floating-
point values in the range [0, 1] and is
typically grayscale.

RGB (Truecolor) Image is an m-by-n-by-3 array of
floating-point values in the range [0, 1].

Image is an m-by-n-by-3 array of
integers in the range [0, 255] or [0,
65535].

 8-Bit and 16-Bit Images

15-13

Read, Write, and Query Image Files

In this section...
“Working with Image Formats” on page 15-14
“Reading a Graphics Image” on page 15-14
“Writing a Graphics Image” on page 15-15
“Subsetting a Graphics Image (Cropping)” on page 15-15
“Obtaining Information About Graphics Files” on page 15-16

Working with Image Formats
In its native form, a graphics file format image is not stored as a MATLAB matrix, or even necessarily
as a matrix. Most graphics files begin with a header containing format-specific information tags, and
continue with bitmap data that can be read as a continuous stream. For this reason, you cannot use
the standard MATLAB I/O commands load and save to read and write a graphics file format image.

Call special MATLAB functions to read and write image data from graphics file formats:

• To read a graphics file format image use imread.
• To write a graphics file format image, use imwrite.
• To obtain information about the nature of a graphics file format image, use imfinfo.

This table gives a clearer picture of which MATLAB commands should be used with which image
types.

Procedure Functions to Use
Load or save a matrix as a MAT-file. load

save
Load or save graphics file format image, e.g., BMP, TIFF. imread

imwrite
Display any image loaded into the MATLAB workspace. image

imagesc
Utilities imfinfo

ind2rgb

Reading a Graphics Image
The imread function reads an image from any supported graphics image file in any of the supported
bit depths. Most of the images that you read are 8-bit. When these are read into memory, they are
stored as class uint8. The main exception to this rule is MATLAB support for 16-bit data for PNG and
TIFF images; if you read a 16-bit PNG or TIFF image, it is stored as class uint16.

15 Displaying Bit-Mapped Images

15-14

Note For indexed images, imread always reads the colormap into an array of class double, even
though the image array itself can be of class uint8 or uint16.

The following commands read the image ngc6543a.jpg into the workspace variable RGB and then
displays the image using the image function:

RGB = imread('ngc6543a.jpg');
image(RGB)

You can write (save) image data using the imwrite function. The statements

load clown % An image that is included with MATLAB
imwrite(X,map,'clown.bmp')

create a BMP file containing the clown image.

Writing a Graphics Image
When you save an image using imwrite, the default behavior is to automatically reduce the bit depth
to uint8. Many of the images used in MATLAB are 8-bit, and most graphics file format images do not
require double-precision data. One exception to the rule for saving the image data as uint8 is that
PNG and TIFF images can be saved as uint16. Because these two formats support 16-bit data, you
can override the MATLAB default behavior by specifying uint16 as the data type for imwrite. The
following example shows writing a 16-bit PNG file using imwrite.

imwrite(I,'clown.png','BitDepth',16);

Subsetting a Graphics Image (Cropping)
Sometimes you want to work with only a portion of an image file or you want to break it up into
subsections. Specify the intrinsic coordinates of the rectangular subsection you want to work with
and save it to a file from the command line. If you do not know the coordinates of the corner points of
the subsection, choose them interactively, as the following example shows:

% Read RGB image from graphics file.
im = imread('street2.jpg');

% Display image with true aspect ratio
image(im); axis image

% Use ginput to select corner points of a rectangular
% region by pointing and clicking the mouse twice
p = ginput(2);

% Get the x and y corner coordinates as integers
sp(1) = min(floor(p(1)), floor(p(2))); %xmin
sp(2) = min(floor(p(3)), floor(p(4))); %ymin
sp(3) = max(ceil(p(1)), ceil(p(2))); %xmax
sp(4) = max(ceil(p(3)), ceil(p(4))); %ymax

% Index into the original image to create the new image
MM = im(sp(2):sp(4), sp(1): sp(3),:);

% Display the subsetted image with appropriate axis ratio

 Read, Write, and Query Image Files

15-15

figure; image(MM); axis image

% Write image to graphics file.
imwrite(MM,'street2_cropped.tif')

If you know what the image corner coordinates should be, you can manually define sp in the
preceding example rather than using ginput.

You can also display a “rubber band box” as you interact with the image to subset it. See the code
example for rbbox for details. For further information, see the documentation for the ginput and
image functions.

Obtaining Information About Graphics Files
The imfinfo function enables you to obtain information about graphics files in any of the standard
formats listed earlier. The information you obtain depends on the type of file, but it always includes at
least the following:

• Name of the file, including the folder path if the file is not in the current folder
• File format
• Version number of the file format
• File modification date
• File size in bytes
• Image width in pixels
• Image height in pixels
• Number of bits per pixel
• Image type: RGB (truecolor), intensity (grayscale), or indexed

15 Displaying Bit-Mapped Images

15-16

Displaying Graphics Images

In this section...
“Image Types and Display Methods” on page 15-17
“Controlling Aspect Ratio and Display Size” on page 15-18

Image Types and Display Methods
To display a graphics file image, use either image or imagesc. For example, read the image
ngc6543a.jpg to a variable RGB and display the image using the image function. Change the axes
aspect ratio to the true ratio using axis command.

RGB = imread('ngc6543a.jpg');
image(RGB);
axis image;

This table summarizes display methods for the three types of images.

Image Type Display Commands Uses Colormap Colors
Indexed image(X); colormap(map) Yes

 Displaying Graphics Images

15-17

Image Type Display Commands Uses Colormap Colors
Intensity imagesc(I,[0 1]);

colormap(gray)
Yes

RGB (truecolor) image(RGB) No

Controlling Aspect Ratio and Display Size
The image function displays the image in a default-sized figure and axes. The image stretches or
shrinks to fit the display area. Sometimes you want the aspect ratio of the display to match the aspect
ratio of the image data matrix. The easiest way to do this is with the axis image command.

For example, these commands display the earth image using the default figure and axes positions:

load earth
image(X)
colormap(map)

The elongated globe results from stretching the image display to fit the axes position. Use the axis
image command to force the aspect ratio to be one-to-one.

axis image

15 Displaying Bit-Mapped Images

15-18

The axis image command works by setting the DataAspectRatio property of the axes object to [1
1 1]. See axis and axes for more information on how to control the appearance of axes objects.

Sometimes you want to display an image so that each element in the data matrix corresponds to a
single screen pixel. To display an image with this one-to-one matrix-element-to-screen-pixel mapping,
use imshow. For example, this command displays the earth image so that one data element
corresponds to one screen pixel:

imshow(X,map)

 Displaying Graphics Images

15-19

15 Displaying Bit-Mapped Images

15-20

The Image Object and Its Properties
In this section...
“Image CData” on page 15-21
“Image CDataMapping” on page 15-21
“XData and YData” on page 15-22
“Add Text to Image Data” on page 15-24
“Additional Techniques for Fast Image Updating” on page 15-25

Image CData

Note The image and imagesc commands create image objects. Image objects are children of axes
objects, as are line, patch, surface, and text objects. Like all graphics objects, the image object has a
number of properties you can set to fine-tune its appearance on the screen. The most important
properties of the image object with respect to appearance are CData, CDataMapping, XData, and
YData. These properties are discussed in this and the following sections. For detailed information
about these and all the properties of the image object, see image.

The CData property of an image object contains the data array. In the following commands, h is the
handle of the image object created by image, and the matrices X and Y are the same:

h = image(X); colormap(map)
Y = get(h,'CData');

The dimensionality of the CData array controls whether the image displays using colormap colors or
as an RGB image. If the CData array is two-dimensional, the image is either an indexed image or an
intensity image; in either case, the image is displayed using colormap colors. If, on the other hand,
the CData array is m-by-n-by-3, it displays as a truecolor image, ignoring the colormap colors.

Image CDataMapping
The CDataMapping property controls whether an image is indexed or intensity. To display an
indexed image set the CDataMapping property to 'direct', so that the values of the CData array
are used directly as indices into the figure's colormap. When the image command is used with a
single input argument, it sets the value of CDataMapping to 'direct':

h = image(X); colormap(map)
get(h,'CDataMapping')
ans =

direct

Intensity images are displayed by setting the CDataMapping property to 'scaled'. In this case, the
CData values are linearly scaled to form colormap indices. The axes CLim property controls the scale
factors. The imagesc function creates an image object whose CDataMapping property is set to
'scaled', and it adjusts the CLim property of the parent axes. For example:

h = imagesc(I,[0 1]); colormap(map)
get(h,'CDataMapping')

 The Image Object and Its Properties

15-21

ans =

scaled

get(gca,'CLim')
ans =

[0 1]

XData and YData
The XData and YData properties control the coordinate system of the image. For an m-by-n image,
the default XData is [1 n] and the default YData is [1 m]. These settings imply the following:

• The left column of the image has an x-coordinate of 1.
• The right column of the image has an x-coordinate of n.
• The top row of the image has a y-coordinate of 1.
• The bottom row of the image has a y-coordinate of m.

Coordinate System for Images

Use Default Coordinate System

Display an image using the default coordinate system. Use colors from the colorcube map.

C = [1 2 3 4; 5 6 7 8; 9 10 11 12];
im = image(C);
colormap(colorcube)

15 Displaying Bit-Mapped Images

15-22

Specify Coordinate System

Display an image and specify the coordinate system. Use colors from the colorcube map.

C = [1 2 3 4; 5 6 7 8; 9 10 11 12];
x = [-1 2];
y = [2 4];
figure
image(x,y,C)
colormap(colorcube)

 The Image Object and Its Properties

15-23

Add Text to Image Data

This example shows how to use array indexing to rasterize text into an existing image.

Draw the text in an axes using the text function. Then, capture the text from the screen using
getframe and close the figure.

fig = figure;
t = text(.05,.1,'Mandrill Face','FontSize',20,'FontWeight','bold');
F = getframe(gca,[10 10 200 200]);
close(fig)

Select any plane of the resulting RGB image returned by getframe. Find the pixels that are black
(black is 0) and convert their subscripts to indexes using sub2ind. Use these subscripts to "paint"
the text into the image contained in the mandrill MAT-file. Use the size of that image, plus the row
and column locations of the text to determine the locations in the new image. Index into new image,
replacing pixels.

c = F.cdata(:,:,1);
[i,j] = find(c==0);
load mandrill
ind = sub2ind(size(X),i,j);
X(ind) = uint8(255);

Display the new image using the bone colormap.

15 Displaying Bit-Mapped Images

15-24

imagesc(X)
colormap bone

Additional Techniques for Fast Image Updating
To increase the rate at which the CData property of an image object updates, optimize CData and set
some related figure and axes properties:

• Use the smallest data type possible. Using a uint8 data type for your image will be faster than
using a double data type.

Part of the process of setting the image's CData property includes copying the matrix for the
image's use. The overall size of the matrix is dependent on the size of its individual elements.
Using smaller individual elements (i.e., a smaller data type) decreases matrix size, and reduces
the amount of time needed to copy the matrix.

• Use the smallest acceptable matrix.

If the speed at which the image is displayed is your highest priority, you may need to compromise
on the size and quality of the image. Again, decreasing the size reduces the time needed to copy
the matrix.

• Set the limit mode properties (XLimMode and YLimMode) of your axes to manual.

 The Image Object and Its Properties

15-25

If they are set to auto, then every time an object (such as an image, line, patch, etc.) changes
some aspect of its data, the axes must recalculate its related properties. For example, if you
specify

image(firstimage);
set(gca, 'xlimmode','manual',...
'ylimmode','manual',...
'zlimmode','manual',...
'climmode','manual',...
'alimmode','manual');

the axes do not recalculate any of the limit values before redrawing the image.
• Consider using a movie object if the main point of your task is to simply display a series of images

onscreen.

The MATLAB movie object utilizes underlying system graphics resources directly, instead of
executing MATLAB object code. This is faster than repeatedly setting an image's CData property,
as described earlier.

15 Displaying Bit-Mapped Images

15-26

Printing Images

When you set the axes Position to [0 0 1 1] so that it fills the entire figure, the aspect ratio is
not preserved when you print because MATLAB printing software adjusts the figure size when
printing according to the figure's PaperPosition property. To preserve the image aspect ratio when
printing, set the figure's PaperPositionMode to 'auto' from the command line.

set(gcf,'PaperPositionMode','auto')
print

When PaperPositionMode is set to 'auto', the width and height of the printed figure are
determined by the figure's dimensions on the screen, and the figure position is adjusted to center the
figure on the page. If you want the default value of PaperPositionMode to be 'auto', enter this
line in your startup.m file.

set(groot,'defaultFigurePaperPositionMode','auto')

 Printing Images

15-27

Convert Image Graphic or Data Type
Converting between data types changes the interpretation of the image data. If you want the
resulting array to be interpreted properly as image data, rescale or offset the data when you convert
it. (See the earlier sections “Image Types” on page 15-4 and “Indexed Images” on page 15-8 for more
information about offsets.)

For certain operations, it is helpful to convert an image to a different image type. For example, to
filter a color image that is stored as an indexed image, first convert it to RGB format. To do this
efficiently, use the ind2rgb function. When you apply the filter to the RGB image, the intensity
values in the image are filtered, as is appropriate. If you attempt to filter the indexed image, the filter
is applied to the indices in the indexed image matrix, and the results may not be meaningful.

You can also perform certain conversions just using MATLAB syntax. For example, to convert a
grayscale image to RGB, concatenate three copies of the original matrix along the third dimension:

RGB = cat(3,I,I,I);

The resulting RGB image has identical matrices for the red, green, and blue planes, so the image
appears as shades of gray.

Changing the graphics format of an image, perhaps for compatibility with another software product,
is very straightforward. For example, to convert an image from a BMP to a PNG, load the BMP using
imread, set the data type to uint8, uint16, or double, and then save the image using imwrite,
with 'PNG' specified as your target format. See imread and imwrite for the specifics of which bit
depths are supported for the different graphics formats, and for how to specify the format type when
writing an image to file.

15 Displaying Bit-Mapped Images

15-28

Displaying Image Data

This example shows how to read an RGB image into the workspace and display it. The example then
converts the RGB image into a grayscale image and displays it. Finally, the example shows how to
combine several individual images into one tiled image (or montage).

Read the Image

The sample file named peppers.png contains an RGB image. Read the image into the workspace
using the imread function.

RGB = imread('peppers.png');

Display the Color Image

Display the image data using the imshow function.

imshow(RGB)

Convert to Grayscale

Convert the RGB image to grayscale using the rgb2gray function.

 Displaying Image Data

15-29

gray = rgb2gray(RGB);

Display the Grayscale Image

Display the grayscale image using the imshow function.

imshow(gray)

Create a Tiled Image from Multiple Images

Combine several individual images into a single tiled image and display the tiled image using the
imshow function.

out = imtile({'peppers.png', 'ngc6543a.jpg'});
imshow(out);

15 Displaying Bit-Mapped Images

15-30

 Displaying Image Data

15-31

Create and Compare Resizing Interpolation Kernels

This example shows how to define a kernel for image resizing and compare different interpolation
kernels on a sample image.

An interpolation kernel calculates the value of a pixel using a weighted average of neighboring pixel
values. The imresize function offers many built-in kernels that perform bilinear, bicubic, and
Lanczos resampling. You can also define a custom kernel and then resize images using the custom
kernel.

To evaluate and compare interpolation kernels, this example magnifies a small image using each
kernel. Fully assessing the performance of interpolation kernels requires examining a variety of
different images and scale factors.

Create Kernels Based on imresize Interpolation Methods

The bilinear method uses a triangular interpolation kernel, which is defined as:

f x =
1 − x x ≤ 1
0 otherwise

Create a bilinear interpolation kernel using a function called triangleResampling. This function is
defined in the Helper Functions section at the end of this example. Then, display the bilinear
interpolation kernel for a neighborhood of [-3.5, 3.5].

nhood = [-3.5 3.5];
fplot(@triangleResampling,nhood)
title("Bilinear (Triangular) Interpolation Kernel")

15 Displaying Bit-Mapped Images

15-32

The bicubic method uses this piecewise cubic interpolation kernel:

f x =
1 . 5 x 3− 2 . 5 x 2 + 1 x ≤ 1

−0 . 5 x 3 + 2 . 5 x 2− 4 x + 2 1 ≤ x ≤ 2
0 otherwise

Create a bicubic interpolation kernel using a helper function called bicubicResampling. This
function is defined in the Helper Functions section at the end of this example. Then, display the
bicubic interpolation kernel.

fplot(@bicubicResampling,nhood)
title("Bicubic Interpolation Kernel")

 Create and Compare Resizing Interpolation Kernels

15-33

The lanczos2 and lanczos3 kernels are based on the Lanczos family of interpolation kernels. The
Lanczos kernels are defined as follows, with a = 2 or a = 3, respectively:

f x =
sinc x sinc x/a |x | ≤ a
0 otherwise

Create a lanczos2 and lanczos3 interpolation kernel using a function called lanczosResampling
and specifying the factor a.

lanczos2 = @(x) lanczosResampling(x,2);
lanczos3 = @(x) lanczosResampling(x,3);

Display the lanczos2 and lanczos3 interpolation kernels.

fplot(lanczos2,nhood)
hold on
fplot(lanczos3,nhood)
hold off
legend(["Lanczos 2","Lanczos 3"])
title("lanczos2 and lanczos3 Interpolation Kernels")

15 Displaying Bit-Mapped Images

15-34

Define Custom Interpolation Kernel

Consider a piecewise rational function based on osculatory rational interpolation [1].

f x =

−0 . 168|x|2− 0 . 9129|x | + 1 . 0808
|x|2− 0 . 8319|x | + 1 . 0808

|x | ≤ 1

0 . 1953|x|2− 0 . 5858|x | + 0 . 3905
|x|2− 2 . 4402|x | + 1 . 7676

1 < |x | ≤ 2

0 2 < |x|

Create a custom interpolation kernel that performs osculatory rational interpolation using a function
called oscResampling. This function is defined in the Helper Functions section at the end of this
example. Then, display the custom interpolation kernel.

fplot(@oscResampling,nhood)
title("Custom Osculatory Rational Interpolation Kernel")

 Create and Compare Resizing Interpolation Kernels

15-35

Resize Image Using Interpolation Kernels

Read and display a small icon image at 100% magnification.

A = imread("region-analyzer-icon.png");
imshow(A,"InitialMagnification",100)

Resize the image by a factor f using each built-in interpolation method. Note that the nearest-
neighbor method does not take a weighted average of neighborhood pixels. Instead, the nearest
neighbor method assigns the output pixels the value of the nearest input pixel.

f = 10;
B_nearest = imresize(A,f,'nearest');
B_bilinear = imresize(A,f,'bilinear');
B_bicubic = imresize(A,f,'bicubic');

15 Displaying Bit-Mapped Images

15-36

B_lanczos2 = imresize(A,f,'lanczos2');
B_lanczos3 = imresize(A,f,'lanczos3');

To resize the image using the custom kernel, specify the function handle and the nonzero kernel
width as the method argument for imresize:

width = 4;
B_osc = imresize(A,f,{@oscResampling,width});

Display the resized images as a tiled image, and compare the results subjectively.

The nearest-neighbor result (upper left) appears quite blocky. The bilinear result (upper center) is
better in most respects than the nearest-neighbor result but looks a little blurry. The bicubic result
(upper right) and lanczos2 result (lower left) appear very similar and are sharper than the bilinear
result. For example, look closely at the digits "3" and "8" near the top of the image. The lanczos3
result (lower center) is sharper than the bicubic and lanczos2 results but exhibits a visible "ringing"
artifact. The ringing artifact appears as a faint echo outside the gray boundary, or by looking just to
the left and right of the thick black stripe running down the middle of the image.

The custom interpolation result (lower right) is slightly sharper than the bicubic and lanczos2 results
with slightly smoother diagonal edges. The custom interpolation result does not exhibit a ringing
artifact.

t = imtile({B_nearest,B_bilinear,B_bicubic, ...
 B_lanczos2,B_lanczos3,B_osc},BackgroundColor="white");
imshow(t)

 Create and Compare Resizing Interpolation Kernels

15-37

Helper Functions

The triangleResampling helper function performs bilinear interpolation.

function f = triangleResampling(x)
 f = (1 - abs(x)) .* (abs(x) <= 1);
end

The bicubicResampling helper function performs bicubic interpolation.

function f = bicubicResampling(x)
 absx = abs(x);
 absx2 = absx.^2;
 absx3 = absx.^3;

 f = (1.5*absx3 - 2.5*absx2 + 1) .* (absx <= 1) + ...
 (-0.5*absx3 + 2.5*absx2 - 4*absx + 2) .* ...
 ((1 < absx) & (absx <= 2));
end

The lanczosResampling helper function performs Lanczos interpolation using a specified factor a.

function f = lanczosResampling(x,a)
 f = a*sin(pi*x) .* sin(pi*x/a) ./ ...
 (pi^2 * x.^2);
 f(abs(x) > a) = 0;
 f(x == 0) = 1;
end

The oscResampling helper function performs osculatory rational interpolation.

function f = oscResampling(x)
 absx = abs(x);
 absx2 = absx.^2;

 f = (absx <= 1) .* ...
 ((-0.168*absx2 - 0.9129*absx + 1.0808) ./ ...
 (absx2 - 0.8319*absx + 1.0808)) ...
 + ...
 ((1 < absx) & (absx <= 2)) .* ...
 ((0.1953*absx2 - 0.5858*absx + 0.3905) ./ ...
 (absx2 - 2.4402*absx + 1.7676));
end

References
[1] Hu, Min, and Jieqing Tan. "Adaptive Osculatory Rational Interpolation for Image Processing."

Journal of Computational and Applied Mathematics 195, no. 1–2 (October 2006): 46–53.
https://doi.org/10.1016/j.cam.2005.07.011.

See Also
imresize

15 Displaying Bit-Mapped Images

15-38

Printing and Saving

• “Print Figure from File Menu” on page 16-2
• “Copy Figure to Clipboard from Edit Menu” on page 16-5
• “Customize Figure Before Saving” on page 16-8
• “Save Plot as Image or Vector Graphics File” on page 16-14
• “Save Figure with Specific Size, Resolution, or Background Color” on page 16-19
• “Save Figure to Reopen in MATLAB Later” on page 16-23
• “Saving and Copying Plots with Minimal White Space” on page 16-25

16

Print Figure from File Menu

In this section...
“Simple Printout” on page 16-2
“Preserve Background Color and Tick Values” on page 16-2
“Figure Size and Placement” on page 16-2
“Line Width and Font Size” on page 16-3

Simple Printout
To print a figure, use File > Print. For example, create a bar chart to print.

x = [3 5 2 6 1 8 2 3];
bar(x)

Click File > Print, select a printer, and click OK. The printer must be set up on your system. If you
do not see a printer that is set up already, then restart MATLAB.

To print the figure programmatically, use the print function.

Preserve Background Color and Tick Values
Some details of the printed figure can look different from the figure on the display. By default, printed
figures use a white figure background color. Also, if the printed figure size is different from the
original figure size, then the axis limits and tick values can differ.

• Preserve the figure background color by clicking File > Print Preview > Color tab. Select Same
as figure for the background color. Select Color for the color scale.

• Preserve the axis limits and tick value locations by clicking File > Print Preview > Advanced
tab. Then, for the Axis limits and ticks option, select Keep screen limits and ticks.

To retain the color scheme programmatically, set the InvertHardcopy property of the figure to
'off'. To keep the same axis limits and tick marks, set the XTickMode, YTickMode, and
ZTickMode properties for the axes to 'manual'.

Figure Size and Placement
To print a figure with specific dimensions, click File > Print Preview > Layout tab. Then, for the
Placement option, select Use manual size and position. Specify the dimensions you want in the
text boxes. Alternatively, use the sliders to the left and top of the figure preview to adjust the size and
placement.

MATLAB changes the figure size in the print preview, but does not change the size of the actual
figure.

16 Printing and Saving

16-2

To specify the printed figure size and placement programmatically, use the PaperPosition property
for the figure.

Line Width and Font Size
To change the line width, font size, and font name for the printed output, click File > Print Preview
> Lines/Text tab. Specify a custom line width in the appropriate text box, for example, 2 points.

 Print Figure from File Menu

16-3

Select a font name from the dropdown list of fonts and specify a custom font size. For example, use
20 point Garamond font.

MATLAB changes the line width and font in the print preview, but does not change the appearance of
the actual figure.

To change the line width and font size programmatically, set properties of the graphics objects. For a
list, see “Graphics Object Properties”.

See Also
print | saveas

Related Examples
• “Copy Figure to Clipboard from Edit Menu” on page 16-5

16 Printing and Saving

16-4

Copy Figure to Clipboard from Edit Menu

This example shows how to copy a figure to the clipboard and how to set copy options. When a figure
is on the clipboard, you can paste it into other applications, such as a document or presentation.

Copy Figure to Clipboard
Create a bar chart with a title. Copy the figure to your system clipboard by clicking Edit > Copy
Figure.

x = [3 5 2 6 1 8 2 3];
bar(x)
title('Bar Chart')

Paste the copied figure into other applications, typically by right-clicking. By default, MATLAB
converts the background color of the copied figure to white.

Note The Copy Figure option is not available on Linux® systems. Use the programmatic alternative.

 Copy Figure to Clipboard from Edit Menu

16-5

To copy the figure programmatically, use the '-clipboard' option with print. Specify the format
as either '-dbitmap', '-dpdf', or '-dmeta'. The metafile format, '-dmeta', is supported on
Windows systems only.

Specify Format, Background Color, and Size Options
You can adjust certain settings for figures that are copied to the clipboard. Access these options by
selecting Edit > Copy Options from the figure menu. The settings apply to all future figures copied
to the clipboard. They do not affect the way the figure looks on the screen.

Note This window is available on Windows systems only. On Mac and Linux systems, use the
programmatic alternatives.

Set the clipboard format to one of these options:

• Metafile — Copy the figure in an EMF color vector format.
• Preserve information — Select the format based on the figure’s renderer. If the renderer is

Painters, then the format is a metafile. If the renderer is OpenGL, then the format is a bitmap
image.

• Bitmap — Copy the figure in a bitmap format.

Set the figure background color to one of these options:

• Use figure color — Keep the background color the same as it appears on the screen. To use the
programmatic alternative, set the InvertHardcopy property for the figure to 'off' before
copying.

16 Printing and Saving

16-6

• Force white background — Copy the figure with a white background. To use the programmatic
alternative, set the InvertHardcopy property for the figure to 'on' before copying.

• Transparent background — Copy the figure with a transparent background. To use the
programmatic alternative, set the Color property for the figure to 'none' and the
InvertHardcopy property to 'off' before copying. Metafile and PDF formats support
transparency. Bitmap formats do not support transparency.

Copy the figure with the same size as it appears on the screen by selecting Match figure screen
size. Clear this option to use the width and height specified in the Export Setup dialog box.

See Also
saveas | print

Related Examples
• “Save Plot as Image or Vector Graphics File” on page 16-14

 Copy Figure to Clipboard from Edit Menu

16-7

Customize Figure Before Saving

This example shows how to use the Export Setup window to customize a figure before saving it. It
shows how to change the figure size, background color, font size, and line width. It also shows how to
save the settings as an export style that you can apply to other figures before saving them.

Set Figure Size
Create a line plot.

x = linspace(0,10);
y = sin(x);
plot(x,y)

Set the figure size by clicking File > Export Setup. Specify the desired dimensions in the Width and
Height fields, for example 5-by-4 inches. The dimensions include the entire figure window except for
the frame, title bar, menu bar, and any tool bars. If the specified width and height are too large, then
the figure might not reach the specified size.

To make the axes fill the figure, select Expand axes to fill figure. This option only affects axes with a
PositionConstraint property set to 'outerposition'.

Click Apply to Figure. Applying the settings changes the appearance of the figure on the screen. All
settings from the Export Setup dialog are applied to the figure. Thus, more than just the figure size
can change. For example, by default, MATLAB converts the background color of the saved figure to
white.

16 Printing and Saving

16-8

Set Figure Background Color
Set the figure background color by clicking the Rendering property in the Export Setup window. In
the Custom color field, specify either a color name from the table or an RGB triplet. For example, set
the background color to yellow.

 Customize Figure Before Saving

16-9

An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green,
and blue components of the color. The intensities must be in the range [0,1], for example, [0.4
0.6 0.7]. This table lists some common RGB triplets that have corresponding color names. To
specify the default gray background color, set the Custom color field to default.

Long Name Short Name Corresponding RGB Triplet
white w [1 1 1]
yellow y [1 1 0]
magenta m [1 0 1]
red r [1 0 0]
cyan c [0 1 1]
green g [0 1 0]
blue b [0 0 1]
black k [0 0 0]

Set Figure Font Size and Line Width
Change the font by clicking the Fonts property. Specify a fixed font size and select a font name, font
weight, and font angle. For example, use 20 point bold font. The tick mark locations might change to
accommodate the new font size.

Change the line width by clicking the Lines property. Specify a fixed line width, for example, 2 points.

16 Printing and Saving

16-10

Click Apply to Figure on the right side of the Export Setup dialog.

Save Figure to File
Save the figure to a file by first clicking Export, and then specifying a file name, location, and desired
format. For more information about file formats, see saveas.

 Customize Figure Before Saving

16-11

Save Figure Settings for Future Use
Save your settings to use for future figures by creating an export style. In the Export Styles section,
type a style name, for example MyCustomSettings. Then, click Save.

Apply Settings to Another Figure
Apply your settings to another figure by opening the Export Setup box from its figure menu. In the
Export Styles section, select the style name and click Load. Next, click Apply to Figure on the right
side of the Export Setup dialog. MATLAB applies the saved style settings to the figure.

Restore Figure to Original Settings
Restore the figure on the screen to the original settings by clicking Restore Figure.

16 Printing and Saving

16-12

Customize Figure Programmatically
Alternatively, you can customize your figure programmatically. To customize the figure
programmatically, set properties of the graphics objects. Typically, graphics functions return output
arguments that you can use to access and modify graphics objects. For example, assign the chart line
objects returned from the plot function to a variable and set their LineWidth property.

p = plot(rand(5));
set(p,'LineWidth',3)

If you do not return the graphics objects as output arguments, you can use findobj to find objects
with certain properties. For example, find all objects in the current figure with a Type property set to
'line'. Then, set their LineWidth property.

plot(rand(5))
p = findobj(gcf,'Type','line')
set(p,'LineWidth',3);

For a list of all graphics objects and their properties, see “Graphics Object Properties”.

See Also
saveas | print | Property Inspector

Related Examples
• “Save Plot as Image or Vector Graphics File” on page 16-14
• “Save Figure with Specific Size, Resolution, or Background Color” on page 16-19

 Customize Figure Before Saving

16-13

Save Plot as Image or Vector Graphics File
You can save plots as images or as vector graphics files using either the export button in the axes
toolbar, or by calling the exportgraphics function. When deciding between the two types of
content, consider the quality, file size, and formatting requirements for the document you are placing
the file into.

Images are supported in most applications. They are useful for representing pictorial images and
complex surfaces. However, because they made up of pixels, they do not always scale well when you
print or display them on other devices that have different resolutions. In some cases, you might need
to save an image with enough resolution to satisfy certain quality requirements. Higher resolution
files tend to be larger, which can make them difficult to share in an email or upload to a server. It can
also be difficult to edit the lines and text in an image without introducing artifacts.

Vector graphics files contain instructions for drawing lines, curves, and polygons. They are useful for
representing content consisting of lines, curves, and regions of solid color. These files contain high
quality content that is scalable to any size. However, some surfaces and mesh plots are too
complicated to be represented using vector graphics. Some applications support extensive editing of
vector graphics files, while other applications support only resizing the graphics.

Regardless of whether you save your plots as images or as vector graphics files, you can get the best
results by finalizing your content in the MATLAB figure before saving your file.

Save Plots Interactively

To save a plot using interactive controls, use the export button in the axes toolbar. The toolbar
appears when you hover over the upper right corner of the axes. The export button supports three
image formats (PNG, JPEG, and TIFF), as well as PDF files, which can contain images or vector
graphics, depending on the content in the axes.

For example, create a bar chart. Save the chart to a file by hovering over the export button in the
axes toolbar and selecting the first item in the drop-down list.

bar([1 11 7 8 2 2 9 3 6])

16 Printing and Saving

16-14

MATLAB displays the Save As dialog box with the file type options.

 Save Plot as Image or Vector Graphics File

16-15

When you use the export button to save a plot, the output is tightly cropped around the axes content,
including any legends or colorbars. The output does not include content outside the axes, such as
other axes in the figure.

If the figure contains multiple plots in a tiled chart layout, you can save all the plots together by
moving the toolbar to the layout. To move the toolbar, call the axtoolbar function and specify the
TiledChartLayout object as an input argument. Then hover over the export button in the toolbar.
The toolbar appears when you hover over the upper right corner of the layout

Save Plots Programmatically

Note The following examples use the exportgraphics function, which is available starting in
R2020a. If you are using an earlier release, see Save Plot as Image or Vector Graphics File (19b).

To save plots programmatically, use the exportgraphics function, which is new in R2020a. The
saved content is tightly cropped around the axes with minimal white space. All UI components and
adjacent containers such as panels are excluded from the saved content. The exportgraphics
function supports three image formats (PNG, JPEG and TIFF) and three formats that support both
vector and image content (PDF, EPS, and EMF). The PDF format supports embedding fonts.

For example, create a bar chart and get the current figure. Then save the figure as a PNG file. In this
case, specify an output resolution of 300 dots per inch (DPI).

bar([1 11 7 8 2 2 9 3 6])
f = gcf;

% Requires R2020a or later
exportgraphics(f,'barchart.png','Resolution',300)

If you specify a file name with a .pdf, .eps, or .emf extension, MATLAB stores either an image or
vector graphics depending on the content in the figure.

16 Printing and Saving

16-16

https://www.mathworks.com/help/releases/R2019b/matlab/creating_plots/saving-your-work.html

You can control whether the file contains an image or vector graphics by specifying the
'ContentType' name-value pair argument. For example, save the content in the current figure as a
PDF containing vector graphics.

% Requires R2020a or later
exportgraphics(gcf,'vectorfig.pdf','ContentType','vector')

To save multiple plots in a figure, create a tiled chart layout and pass the TileChartLayout object
to the exportgraphics function. For example, create a 2-by-1 tiled chart layout t. Place two axes in
the layout by calling the nexttile function, and plot into the axes. Then, save both plots as an EPS
file by calling the exportgraphics function with t as the first argument.

t = tiledlayout(2,1);
nexttile
plot([0 1 0 1])
nexttile
plot([1 0 1 0])

% Requires R2020a or later
exportgraphics(t,'twoplots.eps')

Open Saved Plots in Other Applications
You can open the files you save in other applications such as Microsoft Word or LaTeX.

To add a plot to a LaTeX document, first save the plot as an EPS file using the exportgraphics
function. Then add the \includegraphics element to the LaTeX document. For example:

\documentclass{article}
\usepackage{graphicx}
\begin{document}

\begin{figure}[h]
\centerline{\includegraphics[height=10cm]{twoplots.eps}}
\caption{Plots from MATLAB}

 Save Plot as Image or Vector Graphics File

16-17

\end{figure}

\end{document}

See Also
nexttile | tiledlayout | exportgraphics | copygraphics

Related Examples
• “Save Figure with Specific Size, Resolution, or Background Color” on page 16-19
• “Saving and Copying Plots with Minimal White Space” on page 16-25
• “Save Figure to Reopen in MATLAB Later” on page 16-23

16 Printing and Saving

16-18

Save Figure with Specific Size, Resolution, or Background
Color

In this section...
“Specify Resolution” on page 16-19
“Specify Size” on page 16-20
“Specify Background Color” on page 16-21
“Preserve Axis Limits and Tick Values” on page 16-22

Since R2020a. Replaces Save Figure at Specific Size and Resolution (R2019b) and Save Figure
Preserving Background Color (R2019b).

To save plots for including in documents, such as publications or slide presentations, use the
exportgraphics function. This function enables you to save plots at the appropriate size,
resolution, and background color for your document. The saved content is tightly cropped around the
axes with minimal white space. All UI components and adjacent containers such as panels are
excluded from the saved content.

Specify Resolution
To save a figure as an image at a specific resolution, call the exportgraphics function, and specify
the 'Resolution' name-value pair argument. By default, images are saved at 150 dots per inch
(DPI).

For example, create a bar chart and get the current figure. Then save the figure as a 300-DPI PNG
file.

bar([1 11 7 8 2 2 9 3 6])
f = gcf;
exportgraphics(f,'barchart.png','Resolution',300)

 Save Figure with Specific Size, Resolution, or Background Color

16-19

https://www.mathworks.com/help/releases/R2019b/matlab/creating_plots/save-figure-at-specific-size-and-resolution.html
https://www.mathworks.com/help/releases/R2019b/matlab/creating_plots/save-figure-preserving-background-color.html
https://www.mathworks.com/help/releases/R2019b/matlab/creating_plots/save-figure-preserving-background-color.html

Alternatively, you can specify the axes instead of the figure as the first argument to the
exportgraphics function.

ax = gca;
exportgraphics(ax,'barchartaxes.png','Resolution',300)

Specify Size
The exportgraphics function captures content at the same width and height as it is displayed on
your screen. If you want to change the width and height, then adjust the size of the content displayed
in the figure. One way to do this is to create the plot in a tiled chart layout at the desired size without
any padding. Then pass the layout to the exportgraphics function.

For example, to save a bar chart as a 3-by-3 inch square image, start by creating a 1-by-1 tiled chart
layout t, and set the 'Padding' name-value pair argument to 'tight'.

t = tiledlayout(1,1,'Padding','tight');

Before R2021a, set 'Padding' to 'none'.

Set the Units property of t to inches. Then set the OuterPosition property of t to [0.25 0.25 3
3]. The first two numbers in the vector position the layout at 0.25 inches from the left and bottom
edges of the figure. The last two numbers set the width and height of the layout to 3 inches.

t.Units = 'inches';
t.OuterPosition = [0.25 0.25 3 3];

Next, create an axes object by calling the nexttile function. Then create a bar chart in the axes.

nexttile;
bar([1 11 7 8 2 2 9 3 6])

Save the layout as a 300-DPI JPEG file by passing t to the exportgraphics function. The resulting
image is approximately 3 inches square.

exportgraphics(t,'bar3x3.jpg','Resolution',300)

16 Printing and Saving

16-20

An alternative way to change the size is to save the content as a vector graphics file. Then you can
resize the content in your document. To save the content as a vector graphics file, call the
exportgraphics function and set the 'ContentType' name-value pair argument to 'vector'. For
example, create a bar chart, and save the figure as a PDF file containing vector graphics. All
embeddable fonts are included in the PDF.

bar([1 11 7 8 2 2 9 3 6])
f = gcf;
exportgraphics(f,'barscalable.pdf','ContentType','vector')

Specify Background Color
By default, the exportgraphics function saves content with a white background. You can specify a
different background by setting the BackgroundColor name-value pair argument. These are the
possible values:

• 'current' — Uses the color of the axes parent container (such as a figure or a panel).
• 'none' — Sets the background color to transparent or white, depending on the file format and

the value of ContentType:

• Transparent — For files with ContentType='vector'
• White — For image files, or when ContentType='image'

• A custom color, specified as an RGB triplet such as [1 0 0], a hexadecimal color code such as
#FF0000, or a named color such as 'red'.

For example, create a bar chart, and save the figure as a PDF file with a transparent background.

bar([1 11 7 8 2 2 9 3 6])
f = gcf;
exportgraphics(f,'bartransparent.pdf','ContentType','vector',...
 'BackgroundColor','none')

 Save Figure with Specific Size, Resolution, or Background Color

16-21

Preserve Axis Limits and Tick Values
Occasionally, the exportgraphics function saves your content with different axis limits or tick
values depending on the size of the font and the resolution of the file. To keep the axis limits and tick
values from changing, set the tick value mode and limit mode properties on the axes to 'manual'.
For example, when plotting into Cartesian axes, set the tick value and limit mode properties for the
x-, y-, and z-axis.

bar([1 10 7 8 2 2 9 3 6])
ax = gca;
ax.XTickMode = 'manual';
ax.YTickMode = 'manual';
ax.ZTickMode = 'manual';
ax.XLimMode = 'manual';
ax.YLimMode = 'manual';
ax.ZLimMode = 'manual';
exportgraphics(ax,'barticks.png')

For polar plots, set the RTickMode, ThetaTickMode, RLimMode, and ThetaLimMode properties on
the polar axes to 'manual'.

See Also
Functions
exportgraphics | copygraphics | tiledlayout | nexttile

Properties
TiledChartLayout Properties | Axes | PolarAxes

More About
• “Save Plot as Image or Vector Graphics File” on page 16-14
• “Saving and Copying Plots with Minimal White Space” on page 16-25

16 Printing and Saving

16-22

Save Figure to Reopen in MATLAB Later
This example shows how to save a figure so that you can reopen it in MATLAB later. You can either
save the figure to a FIG-file or you can generate and save the code.

Save Figure to FIG-File
Create a plot to save. Add a title and axis labels.

x = linspace(0,10);
y = sin(x);
plot(x,y)
title('Sine Wave')
xlabel('x ranges from 0 to 10')
ylabel('y = sin(x)')

Save the figure to a FIG-file using the savefig function. The FIG-file stores the information required
to recreate the figure.

savefig('SineWave.fig')

 Save Figure to Reopen in MATLAB Later

16-23

Close the figure, then reopen the saved figure using the openfig function.

close(gcf)
openfig('SineWave.fig')

openfig creates a new figure, a new axes, and a new line object using the same data as the original
objects. Most of the property values of the new objects are the same as the original objects. However,
any current default values apply to the new figure. You can interact with the figure. For example, you
can pan, zoom, and rotate the axes.

Note FIG-files open in MATLAB only. If you want to save the figure in a format that can be opened in
another application, see “Save Plot as Image or Vector Graphics File” on page 16-14.

Generate Code to Recreate Figure
Alternatively, generate the MATLAB code for the plot and then use the code to reproduce the graph.
Generating the code captures modifications that you make using the plot tools.

Click File > Generate Code.... The generated code displays in the MATLAB Editor. Save the code by
clicking File > Save As.

Generated files do not store the data necessary to recreate the graph, so you must supply the data
arguments. The data arguments do not need to be identical to the original data. Comments at the
beginning of the file state the type of data expected.

See Also
saveas | savefig | openfig

Related Examples
• “Save Plot as Image or Vector Graphics File” on page 16-14

16 Printing and Saving

16-24

Saving and Copying Plots with Minimal White Space
One way to minimize the white space when saving or copying the contents of a plot is to use the axes
toolbar, which appears when you hover over the upper right corner of the axes. An alternative method
is to use the exportgraphics and copygraphics functions, which provide more flexibility.

Note The following examples use the exportgraphics and copygraphics functions, which are
new in R2020a. If you are using an earlier release, see Save Plots with Minimal White Space (19b).

Saving or Copying a Single Plot
Create a contour plot of the peaks function with a title and a colorbar.

contour(peaks)
colorbar
title('Peaks Function')

Save the plot to a file by hovering over the export button in the axes toolbar and selecting the first
item in the drop-down list. If you want to copy the contents of the plot to the clipboard, select either
the second or the third item in the drop-down list. The second item copies the content as an image,
and the third items copies the content as a vector graphic. The content you save or copy is tightly
cropped around the title, the axes, and the colorbar.

 Saving and Copying Plots with Minimal White Space

16-25

https://www.mathworks.com/help/releases/R2019b/matlab/creating_plots/save-figure-with-minimal-white-space.html

Alternatively, you can save the content using the exportgraphics function, which is available
starting in R2020a. This function provides the same tight cropping around your content, and it also
provides additional options. For example, you can save an image file and specify the resolution.

ax = gca;
% Requires R2020a or later
exportgraphics(ax,'myplot.png','Resolution',300)

The copygraphics function provides similar functionality for copying content to the clipboard.

ax = gca;
% Requires R2020a or later
copygraphics(ax,'Resolution',300)

Saving or Copying Multiple Plots in a Figure
Starting in R2019b, you can create a tiling of plots in a figure using the tiledlayout function. This
function has options for minimizing the space around the plots. (If you are using an earlier release,
you can use the subplot function to create a tiling of plots. However, the subplot function does not
have options for controlling the space around the plots.)

Create a 2-by-2 tiled chart layout by calling the tiledlayout function. To minimize the space
between the plots, set the 'TileSpacing' name-value pair argument to 'compact'. To minimize
the space around the perimeter of the layout, set the 'Padding' name-value pair argument to
'compact'. Next, call the nexttile function to create the first axes, and call the plot function to
plot into the axes. Then, create three more axes and plots.

% Requires R2019b or later
t = tiledlayout(2,2,'TileSpacing','Compact','Padding','Compact');
nexttile
plot([0 1])
nexttile
plot([1 0])
nexttile
plot([0 1 0 1])
nexttile
plot([1 0 1 0])

16 Printing and Saving

16-26

Save the layout as a PDF file by passing the tiled chart layout (t) to the exportgraphics function.
In this case, save the PDF with a transparent background.

% Requires R2020a or later
exportgraphics(t,'fourplots.pdf','BackgroundColor','none')

Alternatively, you can copy the layout to the clipboard using the copygraphics function.

% Requires R2020a or later
copygraphics(t,'BackgroundColor','none')

See Also
Functions
exportgraphics | copygraphics | tiledlayout | nexttile

Properties
TiledChartLayout Properties

More About
• “Save Plot as Image or Vector Graphics File” on page 16-14

 Saving and Copying Plots with Minimal White Space

16-27

Graphics Properties

• “Modify Graphics Objects” on page 17-2
• “Graphics Object Hierarchy” on page 17-9
• “Access Property Values” on page 17-14
• “Default Property Values” on page 17-19
• “Default Values for Automatically Calculated Properties” on page 17-22
• “How MATLAB Finds Default Values” on page 17-24
• “Factory-Defined Property Values” on page 17-25
• “Multilevel Default Values” on page 17-26

17

Modify Graphics Objects

This example shows how to create, display, and modify graphics objects in MATLAB®.

Graphics Objects

When MATLAB creates a plot, it creates a series of graphics objects. Figures, axes, lines, patches,
and text are examples of graphics objects. The figure below has three graphics objects -- an axes, a
line, and a text object. Use an optional output argument to store the graphics object that is created.

x = -pi:pi/20:pi;
y = sin(x);

f = figure;
p = plot(x,y);
txt1 = text(0.2,0,'sin(x)');

All graphics objects have properties that you can view and modify. These properties have default
values. The display of the line object, p, shows the most commonly used line properties, such as
Color, LineStyle, and LineWidth.

p

p =
 Line with properties:

17 Graphics Properties

17-2

 Color: [0 0.4470 0.7410]
 LineStyle: '-'
 LineWidth: 0.5000
 Marker: 'none'
 MarkerSize: 6
 MarkerFaceColor: 'none'
 XData: [-3.1416 -2.9845 -2.8274 -2.6704 -2.5133 -2.3562 ...]
 YData: [-1.2246e-16 -0.1564 -0.3090 -0.4540 -0.5878 ...]

 Show all properties

MATLAB shows the same display if the semicolon is missing from the command that creates the
object.

txt2 = text(x(end), y(end), 'pi')

txt2 =
 Text (pi) with properties:

 String: 'pi'
 FontSize: 10
 FontWeight: 'normal'
 FontName: 'Helvetica'
 Color: [0 0 0]
 HorizontalAlignment: 'left'
 Position: [3.1416 1.2246e-16 0]
 Units: 'data'

 Modify Graphics Objects

17-3

 Show all properties

Get Graphics Object Properties

To access individual properties of a graphics object, use dot notation syntax object.PropertyName.
For example, return the LineWidth property for the line object.

pcol = p.LineWidth

pcol = 0.5000

Change the line color to red by setting its Color property.

p.Color = 'red';

Parents and Children

MATLAB arranges graphics objects in a hierarchy. The top of the hierarchy is a special object called
the graphics root. To access the graphics root, use the groot function.

groot

ans =
 Graphics Root with properties:

 CurrentFigure: [1x1 Figure]

17 Graphics Properties

17-4

 ScreenPixelsPerInch: 96
 ScreenSize: [1 1 1280 1024]
 MonitorPositions: [1 1 1280 1024]
 Units: 'pixels'

 Show all properties

All graphics objects (except the root) have a parent. For example, the parent of an axes is a figure.

ax = gca;
ax.Parent

ans =
 Figure (1) with properties:

 Number: 1
 Name: ''
 Color: [1 1 1]
 Position: [360 502 560 420]
 Units: 'pixels'

 Show all properties

Many objects also have children. This axes has three children - the two text objects and the line
object.

ax.Children

ans =
 3x1 graphics array:

 Text (pi)
 Text (sin(x))
 Line

Since the axes has multiple children, the value of the Children property is an array of graphics
objects. To access an individual child of the axes, index into the array. You can then set properties of
the child object.

t = ax.Children(2);
t.FontWeight = 'bold';

 Modify Graphics Objects

17-5

Preallocate Graphics Objects Array

It is a best practice in MATLAB to preallocate an array before using it. Use the gobjects command
to preallocate an array of graphics objects. You can then add graphics objects to the array.

objarray = gobjects(1,5);
objarray(1) = f;
objarray(2) = ax;
objarray(3) = p;
objarray(4) = txt1;
objarray(5) = txt2;
objarray

objarray =
 1x5 graphics array:

 Figure Axes Line Text Text

Get All Object Properties

Graphics objects in MATLAB have many properties. To see all the properties of an object, use the get
command.

get(f)

 Alphamap: [0 0.0159 0.0317 0.0476 0.0635 0.0794 0.0952 ...]
 BeingDeleted: off

17 Graphics Properties

17-6

 BusyAction: 'queue'
 ButtonDownFcn: ''
 Children: [1x1 Axes]
 Clipping: on
 CloseRequestFcn: 'closereq'
 Color: [1 1 1]
 Colormap: [256x3 double]
 ContextMenu: [0x0 GraphicsPlaceholder]
 CreateFcn: ''
 CurrentAxes: [1x1 Axes]
 CurrentCharacter: ''
 CurrentObject: [0x0 GraphicsPlaceholder]
 CurrentPoint: [0 0]
 DeleteFcn: ''
 DockControls: on
 FileName: ''
 GraphicsSmoothing: on
 HandleVisibility: 'on'
 Icon: ''
 InnerPosition: [360 502 560 420]
 IntegerHandle: on
 Interruptible: on
 InvertHardcopy: on
 KeyPressFcn: ''
 KeyReleaseFcn: ''
 MenuBar: 'none'
 Name: ''
 NextPlot: 'add'
 Number: 1
 NumberTitle: on
 OuterPosition: [360 502 560 420]
 PaperOrientation: 'portrait'
 PaperPosition: [1.3333 3.3125 5.8333 4.3750]
 PaperPositionMode: 'auto'
 PaperSize: [8.5000 11]
 PaperType: 'usletter'
 PaperUnits: 'inches'
 Parent: [1x1 Root]
 Pointer: 'arrow'
 PointerShapeCData: [16x16 double]
 PointerShapeHotSpot: [1 1]
 Position: [360 502 560 420]
 Renderer: 'opengl'
 RendererMode: 'auto'
 Resize: on
 Scrollable: off
 SelectionType: 'normal'
 SizeChangedFcn: ''
 Tag: ''
 ToolBar: 'none'
 Type: 'figure'
 Units: 'pixels'
 UserData: []
 Visible: off
 WindowButtonDownFcn: ''
 WindowButtonMotionFcn: ''
 WindowButtonUpFcn: ''
 WindowKeyPressFcn: ''

 Modify Graphics Objects

17-7

 WindowKeyReleaseFcn: ''
 WindowScrollWheelFcn: ''
 WindowState: 'normal'
 WindowStyle: 'normal'

17 Graphics Properties

17-8

Graphics Object Hierarchy
In this section...
“MATLAB Graphics Objects” on page 17-9
“Graphs Are Composed of Specific Objects” on page 17-9
“Organization of Graphics Objects” on page 17-9

MATLAB Graphics Objects
Graphics objects are the visual components used by MATLAB to display data graphically. For
example, a graph can contain lines, text, and axes, all displayed in a figure window.

Each object has a unique identifier called a handle. Using this handle, you can manipulate the
characteristics of an existing graphics object by setting object properties. You can also specify values
for properties when you create a graphics object. Typically, you create graphics objects using plotting
functions like plot, bar, scatter, and so on.

Graphs Are Composed of Specific Objects
When you create a graph, for example by calling the plot function, MATLAB automatically performs
a number of steps to produce the graph. These steps involve creating objects and setting the
properties of these objects to appropriate values for your specific graph.

Organization of Graphics Objects
Graphics objects are organized into a hierarchy, as shown by the following diagram.

 Graphics Object Hierarchy

17-9

The hierarchical nature of graphics objects reflects the containment of objects by other objects. Each
object plays a specific role in the graphics display.

For example, suppose you create a line graph with the plot function. An axes object defines a frame
of reference for the lines that represent data. A figure is the window to display the graph. The figure
contains the axes and the axes contains the lines, text, legends, and other objects used to represent
the graph.

Note An axes is a single object that represents x-, y-, and z-axis scales, tick marks, tick labels, axis
labels, and so on.

Here is a simple graph.

17 Graphics Properties

17-10

This graph forms a hierarchy of objects.

 Graphics Object Hierarchy

17-11

Parent-Child Relationship

The relationship among objects is held in the Parent and Children properties. For example, the
parent of an axes is a figure. The Parent property of an axes contains the handle to the figure in
which it is contained.

Similarly, the Children property of a figure contains any axes that the figure contains. The figure
Children property also contains the handles of any other objects it contains, such as legends and
user-interface objects.

You can use the parent-child relationship to find object handles. For example, if you create a plot, the
current axes Children property contains the handles to all the lines:

plot(rand(5))
ax = gca;
ax.Children

ans =

 5x1 Line array:

 Line
 Line
 Line
 Line
 Line

You can also specify the parent of objects. For example, create a group object and parent the lines
from the axes to the group:

17 Graphics Properties

17-12

hg = hggroup;
plot(rand(5),'Parent',hg)

 Graphics Object Hierarchy

17-13

Access Property Values
In this section...
“Object Properties and Dot Notation” on page 17-14
“Graphics Object Variables Are Handles” on page 17-16
“Listing Object Properties” on page 17-17
“Modify Properties with set and get” on page 17-17
“Multi Object/Property Operations” on page 17-18

Object Properties and Dot Notation
Graphing functions return the object or objects created by the function. For example:

h = plot(1:10);

h refers to the line drawn in the graph of the values 1 through 10.

The dot notation syntax uses the object variable and the case-sensitive property name connected with
a dot (.) to form an object dot property name notation:

object.PropertyName

If the object variable is nonscalar, use indexing to refer to a single object:

object(n).PropertyName

Scalar Object Variable

If h is the line created by the plot function, the expression h.Color is the value of this particular
line’s Color property:

h.Color

ans =

 0 0.4470 0.7410

If you assign the color value to a variable:

c = h.Color;

The variable c is a double.

whos

 Name Size Bytes Class

 c 1x3 24 double
 h 1x1 112 matlab.graphics.chart.primitive.Line

You can change the value of this line’s Color property with an assignment statement:

h.Color = [0 0 1];

17 Graphics Properties

17-14

Use dot notation property references in expressions:

meanY = mean(h.YData);

Or to change the property value:

h.LineWidth = h.LineWidth + 0.5;

Reference other objects contained in properties with multiple dot references:

h.Annotation.LegendInformation.IconDisplayStyle

ans =

on

Set the properties of objects contained in properties:

ax = gca;
ax.Title.FontWeight = 'normal';

Nonscalar Object Variable

Graphics functions can return an array of objects. For example:

y = rand(5);
h = plot(y);
size(h)

ans =

 5 1

Access the line representing the first column in y using the array index:

h(1).LineStyle = '--';

Use the set function to set the LineStyle of all the lines in the array:

set(h,'LineStyle','--')

Appending Data to Property Values

With dot notation, you can use “end” indexing to append data to properties that contain data arrays,
such as line XData and YData. For example, this code updates the line XData and YData together to
grow the line. You must ensure the size of line’s x- and y-data are the same before rendering with the
call to drawnow or returning to the MATLAB prompt.

h = plot(1:10);
for k = 1:5
 h.XData(end + 1) = h.XData(end) + k;
 h.YData(end + 1) = h.YData(end) + k;
 drawnow
end

 Access Property Values

17-15

Graphics Object Variables Are Handles
The object variables returned by graphics functions are handles. Handles are references to the actual
objects. Object variables that are handles behave in specific ways when copied and when the object is
deleted.

Copy Object Variable

For example, create a graph with one line:

h = plot(1:10);

Now copy the object variable to another variable and set a property value with the new object
variable:

h2 = h;
h2.Color = [1,0,0]

Assigning the object variable h to h2 creates a copy of the handle, but not the object referred to by
the variable. The value of the Color property accessed from variable h is the same as that accessed
from variable h2.

h.Color

ans =

 1 0 0

h and h2 refer to the same object. Copying a handle object variable does not copy the object.

Delete Object Variables

There are now two object variables in the workspace that refer to the same line.

whos

 Name Size Bytes Class
 h 1x1 112 matlab.graphics.chart.primitive.Line
 h2 1x1 112 matlab.graphics.chart.primitive.Line

Now close the figure containing the line graph:

close gcf

The line object no longer exists, but the object variables that referred to the line do still exist:

whos

 Name Size Bytes Class
 h 1x1 112 matlab.graphics.chart.primitive.Line
 h2 1x1 112 matlab.graphics.chart.primitive.Line

However, the object variables are no longer valid:

h.Color

Invalid or deleted object.

h2.Color = 'blue'

17 Graphics Properties

17-16

Invalid or deleted object.

To remove the invalid object variables, use clear:

clear h h2

Listing Object Properties
To see what properties an object contains, use the get function:

get(h)

MATLAB returns a list of the object properties and their current value:

 AlignVertexCenters: 'off'
 Annotation: [1x1 matlab.graphics.eventdata.Annotation]
 BeingDeleted: 'off'
 BusyAction: 'queue'
 ButtonDownFcn: ''
 Children: []
 Clipping: 'on'
 Color: [0 0.4470 0.7410]
...
 LineStyle: '-'
 LineWidth: 0.5000
 Marker: 'none'
...

You can see the values for properties with an enumerated set of possible values using the set
function:

set(h,'LineStyle')

 '-'
 '--'
 ':'
 '-.'
 'none'

To display all settable properties including possible values for properties with an enumerated set of
values, use set with the object variable:

set(h)

Modify Properties with set and get
You can also access and modify properties using the set and get functions.

The basic syntax for setting the value of a property on an existing object is:

set(object,'PropertyName',NewPropertyValue)

To query the current value of a specific object property, use a statement of the form:

returned_value = get(object,'PropertyName');

Property names are always character vectors. You can use single quotes or a variable that is a
character vector. Property values depend on the particular property.

 Access Property Values

17-17

Multi Object/Property Operations
If the object argument is an array, MATLAB sets the specified value on all identified objects. For
example:

y = rand(5);
h = plot(y);

Set all the lines to red:

set(h,'Color','red')

To set the same properties on a number of objects, specify property names and property values using
a structure or cell array. For example, define a structure to set axes properties appropriately to
display a particular graph:

view1.CameraViewAngleMode = 'manual';
view1.DataAspectRatio = [1 1 1];
view1.Projection = 'Perspective';

To set these values on the current axes, type:

set(gca,view1)

Query Multiple Properties

You can define a cell array of property names and use it to obtain the values for those properties. For
example, suppose you want to query the values of the axes “camera mode” properties. First, define
the cell array:
camModes = {'CameraPositionMode','CameraTargetMode',...
'CameraUpVectorMode','CameraViewAngleMode'};

Use this cell array as an argument to obtain the current values of these properties:

get(gca,camModes)

ans =
 'auto' 'auto' 'auto' 'auto'

17 Graphics Properties

17-18

Default Property Values
In this section...
“Predefined Values for Properties” on page 17-19
“Specify Default Values” on page 17-19
“Where in Hierarchy to Define Default” on page 17-20
“List Default Values” on page 17-20
“Set Properties to the Current Default” on page 17-20
“Remove Default Values” on page 17-20
“Set Properties to Factory-Defined Values” on page 17-21
“List Factory-Defined Property Values” on page 17-21
“Reserved Words” on page 17-21

Predefined Values for Properties
Nearly all graphics object properties have predefined values. Predefined values originate from two
possible sources:

• Default values defined on an ancestor of the object
• Factory values defined on the root of the graphics object hierarchy

Users can create default values for an object property, which take precedence over the factory-
defined values. Objects use default values when:

• Created in a hierarchy where an ancestor defines a default value
• Parented into a hierarchy where an ancestor defines a default value

Specify Default Values
Define a default property value using a character vector with these three parts:

'default' ObjectType PropertyName

• The word default
• The object type (for example, Line)
• The property name (for example, LineWidth)

A character vector that specified the default line LineWidth would be:

'defaultLineLineWidth'

Use this character vector to specify the default value. For example, to specify a default value of 2
points for the line LineWidth property, use the statement:

set(groot,'defaultLineLineWidth',2)

The character vector defaultLineLineWidth identifies the property as a line property. To specify
the figure color, use defaultFigureColor.

 Default Property Values

17-19

set(groot,'defaultFigureColor','b')

Where in Hierarchy to Define Default
In general, you should define a default value on the root level so that all subsequent plotting
functions use those defaults. Specify the root in set and get statements using the groot function,
which returns the handle to the root.

You can define default property values on three levels:

• Root — values apply to objects created in current MATLAB session
• Figure — use for default values applied to children of the figure defining the defaults.
• Axes — use for default values applied only to children of the axes defining the defaults and only

when using low-level functions (light, line, patch, rectangle, surface, text, and the low-
level form of image).

For example, specify a default figure color only on the root level.

set(groot,'defaultFigureColor','b')

List Default Values
Use get to determine what default values are currently set on any given object level:

get(groot,'default')

returns all default values set in your current MATLAB session.

Set Properties to the Current Default
Specifying a property value of 'default' sets the property to the first encountered default value
defined for that property. For example, these statements result in a green surface EdgeColor:

set(groot,'defaultSurfaceEdgeColor','k')
h = surface(peaks);
set(gcf,'defaultSurfaceEdgeColor','g')
set(h,'EdgeColor','default')

Because a default value for surface EdgeColor exists on the figure level, MATLAB encounters this
value first and uses it instead of the default EdgeColor defined on the root.

Remove Default Values
Specifying a property value of 'remove' gets rid of user-defined default values. The statement

set(groot,'defaultSurfaceEdgeColor','remove')

removes the definition of the default surface EdgeColor from the root.

17 Graphics Properties

17-20

Set Properties to Factory-Defined Values
Specifying a property value of 'factory' sets the property to its factory-defined value. For example,
these statements set the EdgeColor of surface h to black (its factory setting), regardless of what
default values you have defined:

set(gcf,'defaultSurfaceEdgeColor','g')
h = surface(peaks);
set(h,'EdgeColor','factory')

List Factory-Defined Property Values
You can list factory values:

• get(groot,'factory') — List all factory-defined property values for all graphics objects
• get(groot,'factoryObjectType') — List all factory-defined property values for a specific

object
• get(groot,'factoryObjectTypePropertyName') — List factory-defined value for the
specified property.

Reserved Words
Setting a property value to default, remove, or factory produces the effects described in the
previous sections. To set a property to one of these words (for example, a text String property set to
the word default), precede the word with the backslash character:

h = text('String','\default');

 Default Property Values

17-21

Default Values for Automatically Calculated Properties
In this section...
“What Are Automatically Calculated Properties” on page 17-22
“Default Values for Automatically Calculated Properties” on page 17-22

What Are Automatically Calculated Properties
When you create a graph, MATLAB sets certain property values appropriately for the particular
graph. These properties, such as those controlling axis limits, have an associated mode property.

The mode property determines if MATLAB calculates a value for the property (mode is auto) or if the
property uses a specified value (mode is manual).

Default Values for Automatically Calculated Properties
Defining a default value for an automatically calculated property requires two steps:

• Define the property default value
• Define the default value of the mode property as manual

Setting X-Axis Limits

Suppose you want to define default values for the x-axis limits. Because the axes XLim property is
usually automatically calculated, you must set the associated mode property (XLimMode) to manual.

set(groot,'defaultAxesXLim',[0 8])
set(groot,'defaultAxesXLimMode','manual')
plot(1:20)

The axes uses the default x-axis limits of [0 8]:

17 Graphics Properties

17-22

 Default Values for Automatically Calculated Properties

17-23

How MATLAB Finds Default Values
All graphics object properties have values built into MATLAB. These values are called factory-defined
values. Any property for which you do not specify a value uses the predefined value.

You can also define your own default values. MATLAB uses your default value unless you specify a
value for the property when you create the object.

MATLAB searches for a default value beginning with the current object and continuing through the
object's ancestors until it finds a user-defined default value or until it reaches the factory-defined
value. Therefore, a search for property values is always satisfied.

MATLAB determines the value to use for a given property according to this sequence of steps:

1 Property default value specified as argument to the plotting function
2 If object is a line created by a high-level plotting function like plot, the axes ColorOrder and

LineStyleOrder definitions override default values defined for the Color or LineStyle
properties.

3 Property default value defined by axes (defaults can be cleared by plotting functions)
4 Property default value defined by figure
5 Property default value defined by root
6 If not default is defined, use factory default value

Setting default values affects only those objects created after you set the default. Existing graphics
objects are not affected.

17 Graphics Properties

17-24

Factory-Defined Property Values
MATLAB defines values for all graphics object properties. Plotting functions use these values if you
do not specify values as arguments or as defaults. Generate a list of all factory-defined values with
the statement

a = get(groot,'Factory');

get returns a structure array whose field names are the object type and property name
concatenated, and field values are the factory value for the indicated object and property. For
example, this field,

factoryAxesVisible: 'on'

indicates that the factory value for the Visible property of axes objects is on.

You can get the factory value of an individual property with

get(groot,'factoryObjectTypePropertyName')

For example:

get(groot,'factoryTextFontName')

 Factory-Defined Property Values

17-25

Multilevel Default Values
This example sets default values on more than one level in the hierarchy. These statements create two
axes in one figure window, setting default values on the figure level and the axes level:

t = 0:pi/20:2*pi;
s = sin(t);
c = cos(t);
figure('defaultAxesPlotBoxAspectRatio',[1 1 1],...
 'defaultAxesPlotBoxAspectRatioMode','manual');
subplot(1,2,1,'defaultLineLineWidth',2);
hold on
plot(t,s,t,c)
text('Position',[3 0.4],'String','Sine')
text('Position',[2 -0.3],'String','Cosine')

subplot(1,2,2,'defaultTextRotation',90);
hold on
plot(t,s,t,c)
text('Position',[3 0.4],'String','Sine')
text('Position',[2 -0.3],'String','Cosine')

Issuing the same plot and text statements to each subplot region results in a different display,
reflecting different default values defined for the axes. The default defined on the figure applies to
both axes.

It is necessary to call hold on to prevent the plot function from resetting axes properties.

17 Graphics Properties

17-26

Note If a property has an associated mode property (for example, PlotBoxAspectRatio and
PlotBoxAspectRatioMode), you must define a default value of manual for the mode property when
you define a default value for the associated property.

 Multilevel Default Values

17-27

Object Identification

• “Special Object Identifiers” on page 18-2
• “Find Objects” on page 18-4
• “Copy Objects” on page 18-8
• “Delete Graphics Objects” on page 18-10

18

Special Object Identifiers
In this section...
“Getting Handles to Special Objects” on page 18-2
“The Current Figure, Axes, and Object” on page 18-2
“Callback Object and Callback Figure” on page 18-3

Getting Handles to Special Objects
MATLAB provides functions that return important object handles so that you can obtain these handles
whenever you require them.

These objects include:

• Current figure — Handle of the figure that is the current target for graphics commands.
• Current axes— Handle of the axes in the current figure that is the target for graphics commands.
• Current object — Handle of the object that is selected
• Callback object — Handle of the object whose callback is executing.
• Callback figure — Handle of figure that is the parent of the callback object.

The Current Figure, Axes, and Object
An important concept in MATLAB graphics is that of being the current object. Being current means
that object is the target for any action that affects objects of that type. There are three objects
designated as current at any point in time:

• The current figure is the window designated to receive graphics output.
• The current axes is the axes in which plotting functions display graphs.
• The current object is the most recent object created or selected.

MATLAB stores the three handles corresponding to these objects in the ancestor's corresponding
property.

These properties enable you to obtain the handles of these key objects:

hRoot = groot;
hFigure = hRoot.CurrentFigure;
hAxes = hFigure.CurrentAxes;
hobj = hFigure.CurrentObject;

Convenience Functions

The following commands are shorthand notation for the property queries.

• gcf — Returns the value of the root CurrentFigure property or creates a figure if there is no
current figure. A figure with its HandleVisibility property set to off cannot become the
current figure.

18 Object Identification

18-2

• gca — Returns the value of the current figure's CurrentAxes property or creates an axes if there
is no current axes. An axes with its HandleVisibility property set to off cannot become the
current axes.

• gco — Returns the value of the current figure's CurrentObject property.

Use these commands as input arguments to functions that require object handles. For example, you
can click a line object and then use gco to specify the handle to the set command,

set(gco,'Marker','square')

or click in an axes object to set an axes property:

set(gca,'Color','black')

You can get the handles of all the graphic objects in the current axes (except hidden handles):

h = get(gca,'Children');

and then determine the types of the objects:

get(h,'Type')

ans =
 'text'
 'patch'
 'surface'
 'line'

Although gcf and gca provide a simple means of obtaining the current figure and axes handles, they
are less useful in code files. Especially true if your code is part of an application layered on MATLAB
where you do not know the user actions that can change these values.

For information on how to prevent users from accessing the handles of graphics objects that you want
to protect, see “Prevent Access to Figures and Axes” on page 22-11.

Callback Object and Callback Figure
Callback functions often require information about the object that defines the callback or the figure
that contains the objects whose callback is executing. To obtain handles, these objects, use these
convenience functions:

• gcbo — Returns the value of the Root CallbackObject property. This property contains the
handle of the object whose callback is executing. gcbo optionally returns the handle of the figure
containing the callback object.

• gcbf — Returns the handle of the figure containing the callback object.

MATLAB keeps the value of the CallbackObject property in sync with the currently executing
callback. If one callback interrupts an executing callback, MATLAB updates the value of
CallbackObject property.

When writing callback functions for the CreateFcn and DeleteFcn, always use gcbo to reference
the callback object.

For more information on writing callback functions, see “Create Callbacks for Graphics Objects” on
page 20-2

 Special Object Identifiers

18-3

Find Objects
In this section...
“Find Objects with Specific Property Values” on page 18-4
“Find Text by String Property” on page 18-4
“Use Regular Expressions with findobj” on page 18-5
“Limit Scope of Search” on page 18-7

Find Objects with Specific Property Values
The findobj function can scan the object hierarchy to obtain the handles of objects that have
specific property values.

For identification, all graphics objects have a Tag property that you can set to any character vector.
You can then search for the specific property/value pair. For example, suppose that you create a
check box that is sometimes inactivated in the UI. By assigning a unique value for the Tag property,
you can find that particular object:

uicontrol('Style','checkbox','Tag','save option')

Use findobj to locate the object whose Tag property is set to 'save option' and disable it:

hCheckbox = findobj('Tag','save option');
hCheckbox.Enable = 'off'

If you do not specify a starting object, findobj searches from the root object, finding all occurrences
of the property name/property value combination that you specify.

To find objects with hidden handles, use findall.

Find Text by String Property
This example shows how to find text objects using the String property.

The following graph contains text objects labeling particular values of the function.

18 Object Identification

18-4

Suppose that you want to move the text labeling the value sin(t) = .707 from its current location at
[pi/4,sin(pi/4)] to the point [3*pi/4,sin(3*pi/4)] where the function has the same value
(shown in light gray out in the graph).

Determine the handle of the text object labeling the point [pi/4,sin(pi/4)] and change its
Position property.

To use findobj, pick a property value that uniquely identifies the object. This example uses the text
String property:

hText = findobj('String','\leftarrowsin(t) = .707');

Move the object to the new position, defining the text Position in axes units.

hText.Position = [3*pi/4,sin(3*pi/4),0];

findobj lets you restrict the search by specifying a starting point in the hierarchy, instead of
beginning with the root object. If there are many objects in the object tree, this capability results in
faster searches. In the previous example, you know that the text object of interest is in the current
axes, so you can type:

hText = findobj(gca,'String','\leftarrowsin(t) = .707');

Use Regular Expressions with findobj

 Find Objects

18-5

This example shows how to find object handles using regular expressions to identify specific property
values. For more information about regular expressions, see regexp.

Suppose that you create the following graph and want to modify certain properties of the objects
created.

x = 0:30;
y = [1.5*cos(x);4*exp(-.1*x).*cos(x);exp(.05*x).*cos(x)]';
h = stem(x,y);
h(1).Marker = 'o';
h(1).Tag = 'Decaying Exponential';
h(2).Marker = 'square';
h(2).Tag = 'Growing Exponential';
h(3).Marker = '*';
h(3).Tag = 'Steady State';

Passing a regular expression to findobj enables you to match specific patterns. For example,
suppose that you want to set the value of the MarkerFaceColor property to green on all stem
objects that do not have their Tag property set to 'Steady State' (that is, stems that represent
decaying and growing exponentials).

hStems = findobj('-regexp','Tag','^(?!Steady State$).');
for k = 1:length(hStems)
 hStems(k).MarkerFaceColor = 'green'
end

18 Object Identification

18-6

Limit Scope of Search
Specify the starting point in the object tree to limit the scope of the search. The starting point can be
the handle of a figure, axes, or a group of object handles.

For example, suppose that you want to change the marker face color of the stems in a specific axes:

x = 0:30;
y = [1.5*cos(x);4*exp(-.1*x).*cos(x);exp(.05*x).*cos(x)]';
tiledlayout(3,1)
ax1 = nexttile;
stem(x,y(:,1))
ax2 = nexttile;
stem(x,y(:,2))
ax3 = nexttile;
stem(x,y(:,3))

Set the marker face color of the stems in the third axes only.

h = findobj(ax3,'Type','stem');
h.MarkerFaceColor = 'red';

For more information on limiting the scope and depth of an object search, see findobj and
findall.

 Find Objects

18-7

Copy Objects
In this section...
“Copying Objects with copyobj” on page 18-8
“Copy Single Object to Multiple Destinations.” on page 18-8
“Copying Multiple Objects” on page 18-8

Copying Objects with copyobj
Copy objects from one parent to another using the copyobj function. The copy differs from the
original:

• The Parent property is now the new parent.
• The copied object’s handle is different from the original.
• copyobj does not copy the original object’s callback properties
• copyobj does not copy any application data associated with the original object.

Therefore, == and isequal return false when comparing original and new handles.

You can copy various objects to a new parent, or one object to several new parents, as long as the
result maintains the correct parent/child relationship. When you copy an object having child objects,
MATLAB copies all children too.

Note You cannot copy the same object more than once to the same parent in a single call to
copyobj.

Copy Single Object to Multiple Destinations.
When copying a single object to multiple destinations, the new handles returned by copyobj are in
the same order as the parent handles.

h = copyobj(cobj,[newParent1,newParent2,newParent3])

The returned array h contains the new object handles in the order shown:

 h(1) -> newParent1
 h(2) -> newParent2
 h(3) -> newParent3

Copying Multiple Objects
This example shows how to copy multiple objects to a single parent.

Suppose that you create a set of similar graphs and want to label the same data point on each graph.
You can copy the text and marker objects used to label the point in the first graph to each subsequent
graph.

Create and label the first graph:

18 Object Identification

18-8

x = 0:.1:2*pi;
plot(x,sin(x))
hText = text('String','\{5\pi\div4, sin(5\pi\div4)\}\rightarrow',...
 'Position',[5*pi/4,sin(5*pi/4),0],...
 'HorizontalAlignment','right');
hMarker = line(5*pi/4,sin(5*pi/4),0,'Marker','*');

Create two more graphs without labels:

figure
x = pi/4:.1:9*pi/4;
plot(x,sin(x))
hAxes1 = gca;

figure
x = pi/2:.1:5*pi/2;
plot(x,sin(x))
hAxes2 = gca;

Copy the text and marker (hText and hMarker) to each graph by parenting them to the respective
axes. Return the new handles for the text and marker copies:

newHandles1 = copyobj([hText,hMarker],hAxes1);
newHandles2 = copyobj([hText,hMarker],hAxes2);

Because the objective is to copy both objects to each axes, call copyobj twice, each time with a
single destination axes.

Copy Multiple Objects to Multiple Destinations

When you call copyobj with multiple objects to copy and multiple parent destinations, copyobj
copies respective objects to respective parents. That is, if h and p are handle arrays of length n, then
this call to copyobj:

copyobj(h,p)

results in an element-by-element copy:

h(1) -> p(1);
h(2) -> p(2);
...
h(n) -> p(n);

 Copy Objects

18-9

Delete Graphics Objects
In this section...
“How to Delete Graphics Objects” on page 18-10
“Handles to Deleted Objects” on page 18-11

How to Delete Graphics Objects
Remove graphics objects with the delete function. Pass the object handle as an argument to
delete. For example, delete the current axes, and all the objects contained in the axes, with the
statement.

delete(gca)

If you want to delete multiple objects, pass an array of handles to delete. For example, if h1, h2, and
h3 are handles to graphics objects that you want to delete, concatenate the handles into a single
array.

h = [h1,h2,h3];
delete(h)

Closing a figure deletes all the objects contained in the figure. For example, create a bar graph.

f = figure;
y = rand(1,5);
bar(y)

The figure now contains axes and bar objects.

ax = f.Children;
b = ax.Children;

Close the figure:

close(f)

MATLAB deletes each object.

f

f =

 handle to deleted Figure

ax

ax =

 handle to deleted Axes

b

b =

 handle to deleted Bar

18 Object Identification

18-10

Handles to Deleted Objects

When you delete a graphics object, MATLAB does not delete the variable that contains the object
handle. However, the variable becomes an invalid handle because the object it referred to no longer
exists.

You can delete graphics objects explicitly using the delete function or by closing the figure that
contains the graphics objects. For example, create a bar graph.

f = figure;
y = rand(1,5);
b = bar(y);

Close the figure containing the bar graph.

close(f)

The handle variables still exist after closing the figure, but the graphics objects no longer exist.

whos

 Name Size Bytes Class

 f 1x1 104 matlab.ui.Figure
 b 1x1 104 matlab.graphics.chart.primitive.Bar
 y 1x5 40 double

Use isgraphics to determine the validity of a graphics object handle.

isgraphics(b)

ans =

 0

You cannot access properties with the invalid handle variable.

h.FaceColor

Invalid or deleted object.

To remove the variable, use the clear function.

clear h

See Also
isvalid

Related Examples
• “Find Objects” on page 18-4

 Delete Graphics Objects

18-11

Working with Graphics Objects

• “Graphics Object Handles” on page 19-2
• “Preallocate Arrays of Graphics Objects” on page 19-4
• “Test for Valid Handle” on page 19-5
• “Handles in Logical Expressions” on page 19-6
• “Graphics Arrays” on page 19-8

19

Graphics Object Handles
In this section...
“What You Can Do with Handles” on page 19-2
“What You Cannot Do with Handles” on page 19-2

What You Can Do with Handles
A handle refers to a specific instance of a graphics object. Use the object handle to set and query the
values of the object properties.

When you create graphics objects, you can save the handle to the object in a variable. For example:

x = 1:10;
y = x.^2;
plot(x,y);
h = text(5,25,'*(5,25)');

The variable h refers to this particular text object '*(5,25)', which is located at the point 5,25.
Use the handle h to query and set the properties of this text object.

Set font size

h.FontSize = 12;

Get font size

h.FontSize

ans =

 12

Make a copy of the variable h. The copy refers to the same object. For example, the following
statements create a copy of the handle, but not the object:

hNew = h;
hNew.FontAngle = 'italic';
h.FontAngle

ans =

italic

What You Cannot Do with Handles
Handles variables are objects. Do not attempt to perform operations involving handles that convert
the handles to a numeric, character, or any other type. For example, you cannot:

• Perform arithmetic operations on handles.
• Use handles directly in logical statements without converting to a logical value.
• Rely on the numeric values of figure handles (integers) in logical statements.

19 Working with Graphics Objects

19-2

• Combine handles with data in numeric arrays.
• Convert handles to character vectors or use handles in character vector operations.

See Also

More About
• “Graphics Arrays” on page 19-8

 Graphics Object Handles

19-3

Preallocate Arrays of Graphics Objects
Use the gobjects function to preallocate arrays for graphics objects. You can fill in each element in
the array with a graphics object handle.

Preallocate a 4-by-1 array:

h = gobjects(4,1);

Assign axes handles to the array elements:

tiledlayout(2,2)
for k=1:4
 h(k) = nexttile;
end

gobjects returns a GraphicsPlaceholder array. You can replace these placeholder elements with
any type of graphics object. You must use gobjects to preallocate graphics object arrays to ensure
compatibility among all graphics objects that are assigned to the array.

19 Working with Graphics Objects

19-4

Test for Valid Handle
Use isgraphics to determine if a variable is a valid graphics object handle. A handle variable (h in
this case) can still exist, but not be a valid handle if the object to which it refers has been deleted.

h = plot(1:10);
...
close % Close the figure containing the plot
whos

Name Size Bytes Class Attributes

 h 1x1 104 matlab.graphics.chart.primitive.Line

Test the validity of h:

isgraphics(h)

ans =

 0

For more information on deleted handles, see “Deleted Handle Objects”.

 Test for Valid Handle

19-5

Handles in Logical Expressions
In this section...
“If Handle Is Valid” on page 19-6
“If Result Is Empty” on page 19-6
“If Handles Are Equal” on page 19-7

Handle objects do not evaluate to logical true or false. You must use the function that tests for the
state of interest and returns a logical value.

If Handle Is Valid
Use isgraphics to determine if a variable contains a valid graphics object handle. For example,
suppose hobj is a variable in the workspace. Before operating on this variable, test its validity:

if isgraphics(hobj)
 ...
end

You can also determine the type of object:

if isgraphics(hobj,'figure')
 ...% hobj is a figure handle
end

If Result Is Empty
You cannot use empty objects directly in logical statements. Use isempty to return a logical value
that you can use in logical statements.

Some properties contain the handle to other objects. In cases where the other object does not exist,
the property contains an empty object:

close all
hRoot = groot;
hRoot.CurrentFigure

ans =

0x0 empty GraphicsPlaceholder array.

For example, to determine if there is a current figure by querying the root CurrentFigure property,
use the isempty function:

hRoot = groot;
if ~isempty(hRoot.CurrentFigure)
 ... % There is a current figure
end

Another case where code can encounter an empty object is when searching for handles. For example,
suppose you set a figure’s Tag property to the character vector 'myFigure' and you use findobj to
get the handle of this figure:

19 Working with Graphics Objects

19-6

if isempty(findobj('Tag','myFigure'))
 ... % That figure was NOT found
end

findobj returns an empty object if there is no match.

If Handles Are Equal
There are two states of being equal for handles:

• Any two handles refer to the same object (test with ==).
• The objects referred to by any two handles are the same class, and all properties have the same

values (test with isequal).

Suppose you want to determine if h is a handle to a particular figure that has a value of myFigure for
its Tag property:

if h == findobj('Tag','myFigure')
 ...% h is correct figure
end

If you want to determine if different objects are in the same state, use isequal:

hLine1 = line;
hLine2 = line;
isequal(hLine1,hLine2)

ans =

 1

 Handles in Logical Expressions

19-7

Graphics Arrays

Graphics arrays can contain the handles of any graphics objects. For example, this call to the plot
function returns an array containing five line object handles:

y = rand(20,5);
h = plot(y)

h =

 5x1 Line array:

 Line
 Line
 Line
 Line
 Line

This array contains only handles to line objects. However, graphics arrays can contain more than one
type of graphics object. That is, graphics arrays can be heterogeneous.

For example, you can concatenate the handles of the figure, axes, and line objects into one array,
harray:

hf = figure;
ha = axes;
hl = plot(1:10);
harray = [hf,ha,hl]

harray =

 1x3 graphics array:

 Figure Axes Line

Graphics arrays follow the same rules as any MATLAB array. For example, array element dimensions
must agree. In this code, plot returns a 5-by-1 Line array:

hf = figure;
ha = axes;
hl = plot(rand(5));
harray = [hf,ha,hl];
Error using horzcat
Dimensions of matrices being concatenated are not consistent.

To form an array, you must transpose hl:

harray = [hf,ha,hl']

harray =

 1x7 graphics array:

 Figure Axes Line Line Line Line Line

19 Working with Graphics Objects

19-8

You cannot concatenate numeric data with object handles, with the exception of the unique identifier
specified by the figure Number property. For example, if there is an existing figure with its Number
property set to 1, you can refer to that figure by this number:

figure(1)
aHandle = axes;
[aHandle,1]

ans =

 1x2 graphics array:

 Axes Figure

The same rules for array formation apply to indexed assignment. For example, you can build a handle
array with a for loop:

harray = gobjects(1,7);
hf = figure;
ha = axes;
hl = plot(rand(5));
harray(1) = hf;
harray(2) = ha;
for k = 1:length(hl)
 harray(k+2) = hl(k);
end

 Graphics Arrays

19-9

Graphics Object Callbacks

• “Create Callbacks for Graphics Objects” on page 20-2
• “Button Down Callback Function” on page 20-6
• “Define a Context Menu” on page 20-7
• “Define an Object Creation Callback” on page 20-8
• “Define an Object Deletion Callback” on page 20-9
• “Capturing Mouse Clicks” on page 20-10
• “Pass Mouse Click to Group Parent” on page 20-14
• “Pass Mouse Click to Obscured Object” on page 20-16

20

Create Callbacks for Graphics Objects
What Is a Callback?
A callback is a command that executes in response to some predefined user action, such as clicking
on a graphics object or closing a figure window. You can program a response to specific user action
by writing a callback function to process the action and then assigning the function to the callback
property associated with that user action. For example, you can create a ButtonDownFcn callback
for a figure to program a response to a user clicking the figure.

This topic contains examples of writing callbacks for graphics objects such as Line, Axes, or Figure
objects. For a list of callbacks associated with a specific graphics object, see the properties of that
object. For example, for a list of Figure callbacks, see Figure Properties.

For information about writing callbacks for UI components in an app, see “Create Callbacks for Apps
Created Programmatically”.

Create Basic Callback
Graphics callback functions must accept at least two input arguments:

• The graphics object whose callback is executing — Use this argument within your callback
function to refer to the object.

• The event data structure — Use this argument within your callback function to access information
about the user action that is specific to the callback property and the object. This structure is
empty for many graphics object callbacks.

Whenever a callback executes in response to a user action, MATLAB calls the callback function and
passes these two arguments to the function.

To create a callback, first define a callback function with the required input arguments. Then, assign
a handle to the function to the relevant callback property.

Define Callback Function

For example, create a new file named figureCallback.m and define a callback function named
figureCallback. The callback function processes the action when a user presses a key in a figure
window. Define the callback function to accept two input arguments:

• src — Use the first argument to refer to the specific figure whose callback is executing to find the
Line object plotted in the figure.

• event — Use the second argument to access specific information about the key press user action.
If the key that was pressed is +, increase the width of the line, and if it is -, decrease the width of
the line.

function figureCallback(src,event)
line = findobj(src,"Type","Line");
if event.Character == "+"
 line.LineWidth = line.LineWidth+1;
elseif event.Character == "-"
 line.LineWidth = max(line.LineWidth-1,0.5);
end
end

20 Graphics Object Callbacks

20-2

Assign Callback Function to Callback Property

In the Command Window, create a Figure object. Use the @ operator to assign the function handle to
the WindowKeyPressFcn property of the figure. This callback executes when a user presses a key in
the figure window. Then, plot some data in the current figure.

f = figure(WindowKeyPressFcn=@figureCallback);
plot(1:10)

Run the code and press +. The line width increases.

Note Keyboard-based callbacks are not currently supported for figures in the Live Editor. For more
information, see Figure Properties.

Create Callback with Additional Input Arguments
You can create a callback with additional input arguments by using an anonymous function. First,
define a callback function with any number of input arguments. Then, specify the relevant callback
property value as an anonymous function that accepts the required source and event arguments that
MATLAB passes to the callback, and then calls your callback function with the appropriate inputs.

Note Creating a callback as an anonymous function is not currently supported for figures in the Live
Editor.

Define Callback Function

For example, define a callback function that changes the plot color and then displays x- and y-
coordinates in the Command Window when a user clicks a point in the plot. Create a new file named
displayCoordinates.m and define a callback function named displayCoordinates. Define the
callback function to accept two input arguments:

• src — Use the first argument to refer to the specific graphics object whose callback is executing.
• ax — Use the second argument to access the location of the mouse pointer on the axes.

The function does not use the callback event data, so do not create an event input argument.

function displayCoordinates(src,ax)
src.MarkerEdgeColor = rand(1,3);
disp(ax.CurrentPoint(1,1:2))
end

Assign Callback Function to Callback Property

In the Command Window, plot some data on an axes object using the scatter function. Specify the
ButtonDownFcn callback property of the Scatter object using an anonymous function. The
anonymous function accepts the source and event arguments that MATLAB passes to the callback and
then calls the displayCoordinates function with the required inputs.

ax = axes;
x = randn(100,1);
y = randn(100,1);
scatter(x,y,"ButtonDownFcn",@(src,event)displayCoordinates(src,ax))

 Create Callbacks for Graphics Objects

20-3

Run the code and click a plotted point. The plot color changes, and the x- and y-coordinates display in
the Command Window.

For more information, see “Anonymous Functions”.

While anonymous functions provide the most flexibility for specifying callback input arguments
beyond the source and event inputs, in certain cases an alternative is to specify a callback using a cell
array. If your callback function accepts both the source and event inputs followed by any other
arguments, you can assign the callback by specifying a cell array with the function handle as the first
element, followed by the inputs to the function.

For example, you can modify the displayCoordinates function to accept the event data input. Use
the ~ character to indicate that the input is not used.

function displayCoordinates(src,~,ax)
src.MarkerEdgeColor = rand(1,3);
disp(ax.CurrentPoint(1,1:2))
end

Then, you can instead specify the ButtonDownFcn callback property using a cell array. The first
element of the array is a handle to the displayCoordinates function, and the second element is
the axes object that is passed to the displayCoordinates function after the source and event
arguments.

ax = axes;
x = randn(100,1);
y = randn(100,1);
scatter(x,y,"ButtonDownFcn",{@displayCoordinates,ax})

Create Callback as a Default
When you call a plotting function, such as plot or bar, MATLAB creates new graphics objects and
resets most figure and axes properties. Therefore, callback functions that you have defined for
specific graphics objects might be removed by MATLAB. To instead create a callback that executes
for all objects of a specific type, assign a callback function as a default on the root level.

Define Callback Function

Define a function named customizeGrid in a new file named customizeGrid.m. The function
takes in an axes object and turns on and customizes its grid lines.

function customizeGrid(ax)
ax.XGrid = 'on';
ax.YGrid = 'on';
ax.GridLineStyle = '--';
ax.GridAlpha = 0.5;
end

Assign Callback Function to Callback Property

Execute the customizeGrid function whenever MATLAB creates a new axes object by setting a
default axes CreateFcn callback on the groot object. Assign the property as an anonymous function
that takes in the two required callback inputs and then calls the customizeGrid function for the
Axes object being created.

set(groot,"defaultAxesCreateFcn",@(src,~)customizeGrid(src))

20 Graphics Object Callbacks

20-4

Create multiple axes in a figure. The customized grid appears for each of them.

ax1 = axes("Position",[0.1 0.1 0.8 0.35]);
ax2 = axes("Position",[0.1 0.55 0.8 0.35]);

For more information, see “Default Property Values” on page 17-19.

The default callback remains set for the MATLAB session. To set a default callback for every MATLAB
session, add the default value assignment to your startup.m file. For more information, see
startup.

See Also

Related Examples
• “Create Callbacks for Apps Created Programmatically”
• “Share Data Among Callbacks”
• “Interrupt Callback Execution”
• “Class Methods for Graphics Callbacks”

 Create Callbacks for Graphics Objects

20-5

Button Down Callback Function

In this section...
“When to Use a Button Down Callback” on page 20-6
“How to Define a Button Down Callback” on page 20-6

When to Use a Button Down Callback
Button down callbacks execute when users left-click on the graphics object for which the callback is
assigned. Button down callbacks provide a simple way for users to interact with an object without
requiring you to program additional user-interface objects, like push buttons or popup menu.

Program a button down callback when you want users to be able to:

• Perform a single operation on a graphics object by left-clicking
• Select among different operations performed on a graphics object using modifier keys in

conjunction with a left-click

How to Define a Button Down Callback
• Create the callback function that MATLAB executes when users left-click on the graphics object.
• Assign a function handle that references the callback function to the ButtonDownFcn property of

the object.

...'ButtonDownFcn',@callbackFcn

Define the Callback Function

In this example, the callback function is called lineCallback. When you assign the function handle
to the ButtonDownFcn property, this function must be on the MATLAB path.

Values used in the callback function include:

• src — The handle to the line object that the user clicks. MATLAB passes this handle .
• src.Color — The line object Color property.

function lineCallback(src,~)
 src.Color = rand(1,3);
end

Using the Callback

Here is a call to the plot function that creates line graphs and defines a button down callback for each
line created.

plot(rand(1,5),'ButtonDownFcn',@lineCallback)

To use the callback, create the plot and left-click on a line.

20 Graphics Object Callbacks

20-6

Define a Context Menu
This example shows how to define a context menu.

When to Use a Context Menu
Context menus are displayed when users right-click the graphics object for which you assign the
context menu. Context menus enable you to provide choices to users for interaction with graphics
objects.

Program a context menu when you want user to be able to:

• Choose among specific options by right-clicking a graphics object.
• Provide an indication of what each option is via the menu label.
• Produce a specific result without knowing key combinations.

How to Define a Context Menu
• Create a ContextMenu object by calling the uicontextmenu function with an output argument.
• Create each menu item using uimenu.
• Define callbacks for each menu item in the context menu.
• Parent the individual menu items to the context menu and assign the respective callback.
• Assign the ContextMenu object to the ContextMenu property of the object for which you are
defining the context menu.

function cmHandle = defineCM
 cmHandle = uicontextmenu;
 uimenu(cmHandle,'Label','Wider','Callback',@increaseLW);
 uimenu(cmHandle,'Label','Inspect','Callback',@inspectLine);
end
function increaseLW(~,~)
% Increase line width
 h = gco;
 orgLW = h.LineWidth;
 h.LineWidth = orgLW+1;
end
function inspectLine(~,~)
% Open the property inspector
 h = gco;
 inspect(h)
end

The defineCM function returns the handle to the context menu that it creates. Assign this handle to
the ContextMenu property of the line objects as they are created by the plot function:

plot(rand(1,5),'ContextMenu',defineCM)

Use a similar programming pattern for your specific requirements.

 Define a Context Menu

20-7

Define an Object Creation Callback
This example shows how to define an object creation callback.

Define an object creation callback that specifies values for the LineWidth and Marker properties of
line objects.

function lineCreate(src,~)
 src.LineWidth = 2;
 src.Marker = 'o';
end

Assign this function as the default line creation callback using the line CreateFcn property:

set(groot,'defaultLineCreateFcn',@lineCreate)

The groot function specifies the root of the graphics object hierarchy. Therefore, all lines created in
any given MATLAB session acquire this callback. All plotting functions that create lines use these
defaults.

An object’s creation callback executes directly after MATLAB creates the object and sets all its
property values. Therefore, the creation callback can override property name/value pairs specified in
a plotting function. For example:

set(groot,'defaultLineCreateFcn',@lineCreate)
h = plot(1:10,'LineWidth',.5,'Marker','none')

The creation callback executes after the plot function execution is complete. The LineWidth and
Marker property values of the resulting line are those values specified in the creation callback:

h =

 Line with properties:

 Color: [0 0 1]
 LineStyle: '-'
 LineWidth: 2
 Marker: 'o'
 MarkerSize: 6
 MarkerFaceColor: 'none'
 XData: [1 2 3 4 5 6 7 8 9 10]
 YData: [1 2 3 4 5 6 7 8 9 10]
 ZData: []

Related Information
For information about defining callback functions, see “Create Callbacks for Graphics Objects” on
page 20-2

20 Graphics Object Callbacks

20-8

Define an Object Deletion Callback
You can create an object deletion callback that executes code when you delete the object.

For example, create an object deletion callback for a figure so that when you delete the figure a
dialog appears asking if you want to delete all the figures. Copy the following code to a new function
file and save it as figDelete.m either in the current folder or in a folder on the MATLAB search
path.

function figDelete(~,~)
yn = questdlg('Delete all figures?',...
 'Figure Menu',...
 'Yes','No','No');
switch yn
 case 'Yes'
 allfigs = findobj(get(groot,'Children'),'Type','figure');
 set(allfigs,'DeleteFcn',[]);
 delete(allfigs)
 case 'No'
 return
end
end

Then create two figures and assign the figDelete function to the DeleteFcn properties. Delete one
of the figures and choose an option on the dialog that appears.

figure('DeleteFcn',@figDelete)
figure('DeleteFcn',@figDelete)

 Define an Object Deletion Callback

20-9

Capturing Mouse Clicks

In this section...
“Properties That Control Response to Mouse Clicks” on page 20-10
“Combinations of PickablePart/HitTest Values” on page 20-10
“Passing Mouse Click Up the Hierarchy” on page 20-11

Properties That Control Response to Mouse Clicks
There are two properties that determine if and how objects respond to mouse clicks:

• PickableParts — Determines if an object captures mouse clicks
• HitTest — Determines if the object can respond to the mouse click it captures or passes the click

to its closest ancestor.

Objects pass the click through the object hierarchy until reaching an object that can respond.

Programming a Response to a Mouse Click

When an object captures and responds to a mouse click, the object:

• Executes its button down function in response to a mouse left-click — If the object defines a
callback for the ButtonDownFcn property, MATLAB executes this callback.

• Displays context menu in response to a mouse right-click — If the object defined a context menu
using the ContextMenu property, MATLAB invokes this context menu.

Note Figures do not have a PickableParts property. Figures execute button callback functions
regardless of the setting of their HitTest property.

Note If the axes PickableParts property is set to 'none', the axes children cannot capture mouse
clicks. In this case, all mouse clicks are captured by the figure.

Combinations of PickablePart/HitTest Values
Use the PickableParts and HitTest properties to implement the following behaviors:

• Clicked object captures mouse click and responds with button down callback or context menu.
• Clicked object captures mouse click and passes the mouse click to one of its ancestors, which can

respond with button down callback or context menu.
• Clicked object does not capture mouse click. Mouse click can be captured by objects behind the

clicked object.

This table summarizes the response to a mouse click based on property values.

20 Graphics Object Callbacks

20-10

Axes
PickableParts

PickableParts HitTest Result of Mouse Click

visible/all visible (default) on (default) Clicking visible parts of object executes
button down callback or invokes
context menu

visible/all all on Clicking any part of the object, even if
not visible, makes object current and
executes button down callback or
invokes context menu

visible/all/none none on/off Clicking the object never makes it the
current object and can never execute
button down callback or invoke context
menu

none visible/all/none on/off Clicking any axes child objects never
executes button down callback or
invokes context menu

MATLAB searches ancestors using the Parent property of each object until finding a suitable
ancestor or reaching the figure.

Passing Mouse Click Up the Hierarchy
Consider the following hierarchy of objects and their PickableParts and HitTest property
settings.

 Capturing Mouse Clicks

20-11

This code creates the hierarchy:

function pickHit
f = figure;
ax = axes;
p = patch(rand(1,3),rand(1,3),'g');
l = line([1 0],[0 1]);
set(f,'ButtonDownFcn',@(~,~)disp('figure'),...
 'HitTest','off')
set(ax,'ButtonDownFcn',@(~,~)disp('axes'),...
 'HitTest','off')
set(p,'ButtonDownFcn',@(~,~)disp('patch'),...
 'PickableParts','all','FaceColor','none')
set(l,'ButtonDownFcn',@(~,~)disp('line'),...
 'HitTest','off')
end

Click the Line

Left-click the line:

• The line becomes the current object, but cannot execute its ButtonDownFcn callback because its
HitTest property is off.

• The line passes the hit to the closest ancestor (the parent axes), but the axes cannot execute its
ButtonDownFcn callback, so the axes passes the hit to the figure.

20 Graphics Object Callbacks

20-12

• The figure can execute its callback, so MATLAB displays figure in the Command Window.

Click the Patch

The patch FaceColor is none. However, the patch PickableParts is all, so you can pick the
patch by clicking the empty face and the edge.

The patch HitTest property is on so the patch can become the current object. When the patch
becomes the current object, it executes its button down callback.

 Capturing Mouse Clicks

20-13

Pass Mouse Click to Group Parent
This example shows how a group of objects can pass a mouse click to a parent, which operates on all
objects in the group.

Objective and Design
Suppose you want a single mouse click on any member of a group of objects to execute a single
button down callback affecting all objects in the group.

• Define the graphics objects to be added to the group.
• Assign an hggroup object as the parent of the graphics objects.
• Define a function to execute when any of the objects are clicked. Assign its function handle to the

hggroup object’s ButtonDownFcn property.
• Set the HitTest property of every object in the group to off so that the mouse click is passed to

the object’s parent.

Object Hierarchy and Key Properties
This example uses the following object hierarchy.

MATLAB Code
Create a file with two functions:

• pickPatch — The main function that creates the graphics objects.

20 Graphics Object Callbacks

20-14

• groupCB — The local function for the hggroup callback.

The pickPatch function creates three patch objects and parents them to an hggroup object. Setting
the HitTest property of each patch to off directs mouse clicks to the parent.

function pickPatch
 figure
 x = [0 1 2];
 y = [0 1 0];
 hGroup = hggroup('ButtonDownFcn',@groupCB);
 patch(x,y,'b',...
 'Parent',hGroup,...
 'HitTest','off')
 patch(x+2,y,'b',...
 'Parent',hGroup,...
 'HitTest','off')
 patch(x+3,y,'b',...
 'Parent',hGroup,...
 'HitTest','off')
end

The groupCB callback operates on all objects contained in the hggroup. The groupCB function uses
the callback source argument passed to the callback (src) to obtain the handles of the patch objects.

Using the callback source argument (which is the handle to hggroup object) eliminates the need to
create global data or pass additional arguments to the callback.

A left-click on any patch changes the face color of all three patches to a random RGB color value.

function groupCB(src,~)
 s = src.Children;
 set(s,'FaceColor',rand(1,3))
end

For more information on callback functions, see “Create Callbacks for Graphics Objects” on page 20-2

 Pass Mouse Click to Group Parent

20-15

Pass Mouse Click to Obscured Object
This example shows how to pass mouse clicks to an obscured object.

Set the PickableParts property of a graphics object to none to prevent the object from capturing a
mouse click. This example:

• Defines a context menu for the axes that calls hold with values on or off
• Creates graphs in which none of the data objects can capture mouse clicks, enabling all right-

clicks to pass to the axes and invoke the context menu.

The axesHoldCM function defines a context menu and returns its handle.

function cmHandle = axesHoldCM
 cmHandle = uicontextmenu;
 uimenu(cmHandle,'Label','hold on','Callback',@holdOn);
 uimenu(cmHandle,'Label','hold off','Callback',@holdOff);
end
function holdOn(~,~)
 fig = gcbf;
 ax = fig.CurrentAxes;
 hold(ax,'on')
end
function holdOff(~,~)
 fig = gcbf;
 ax = fig.CurrentAxes;
 hold(ax,'off')
end

Create a bar graph and set the PickableParts property of the Bar objects:

bar(1:20,'PickableParts','none')

Create the context menu for the current axes:

ax = gca;
ax.ContextMenu = axesHoldCM

Right-click over the bars in the graph and display the axes context menu:

20 Graphics Object Callbacks

20-16

 Pass Mouse Click to Obscured Object

20-17

Group Objects

• “Object Groups” on page 21-2
• “Create Object Groups” on page 21-3
• “Transforms Supported by hgtransform” on page 21-5
• “Rotate About an Arbitrary Axis” on page 21-9
• “Nest Transforms for Complex Movements” on page 21-12

21

Object Groups
Group objects are invisible containers for graphics objects. Use group objects to form a collection of
objects that can behave as one object in certain respects. When you set properties of the group
object, the result applies to the objects contained in the group.

For example, you can make the entire group visible or invisible, select all objects when only one is
clicked, or apply a transform matrix to reposition the objects.

Group objects can contain any of the objects that axes can contain, such as lines, surfaces, text, and
so on. Group objects can also contain other group objects. Group objects are always parented to an
axes object or another group object.

There are two kinds of group objects:

• Group — Use when you want to create a group of objects and control the visibility or selectability
of the group based on what happens to any individual object in the group. Create group objects
with the hggroup function.

• Transform — Use when you want to transform a group of objects. Transforms include rotation,
translation, and scaling. For an example, see “Nest Transforms for Complex Movements” on page
21-12. Create transform objects with the hgtransform function.

The difference between the group and transform objects is that the transform object can apply a
transform matrix (via its Matrix property) to all objects for which it is the parent.

21 Group Objects

21-2

Create Object Groups
In this section...
“Parent Specification” on page 21-3
“Visible and Selected Properties of Group Children” on page 21-4

Create an object group by parenting objects to a group or transform object. For example, call
hggroup to create a group object and save its handle. Assign this group object as the parent of
subsequently created objects:

hg = hggroup;
plot(rand(5),'Parent',hg)
text(3,0.5,'Random lines','Parent',hg)

Setting the visibility of the group to off makes the line and text objects it contains invisible.

hg.Visible = 'off';

You can add objects to a group selectively. For example, the following call to the bar function returns
the handles to five separate bar objects:

hb = bar(randn(5))

hb =

 1x5 Bar array:

 Bar Bar Bar Bar Bar

Parent the third, fourth, and fifth bar object to the group:

hg = hggroup;
set(hb(3:5),'Parent',hg)

Group objects can be the parent of any number of axes children, including other group objects. For
examples, see “Rotate About an Arbitrary Axis” on page 21-9 and “Nest Transforms for Complex
Movements” on page 21-12.

Parent Specification
Plotting functions clear the axes before generating their graph. However, if you assign a group or
transform as the Parent in the plotting function, the group or transform object is not cleared.

For example:

hg = hggroup;
hb = bar(randn(5));
set(hb,'Parent',hg)

Error using matlab.graphics.chart.primitive.Bar/set
Cannot set property to a deleted object

The bar function cleared the axes. However, if you set the Parent property as a name/value pair in
the bar function arguments, the bar function does not delete the group:

 Create Object Groups

21-3

hg = hggroup;
hb = bar(randn(5),'Parent',hg);

Visible and Selected Properties of Group Children
Setting the Visible property of a group or transform object controls whether all the objects in the
group are visible or not visible. However, changing the state of the Visible property for the group
object does not change the state of this property for the individual objects. The values of the Visible
property for the individual objects are preserved.

For example, if the Visible property of the group is set to off and subsequently set to on, only the
objects that were originally visible are displayed.

The same behavior applies to the Selected and SelectionHighlight properties. The children of
the group or transform object show the state of the containing object properties without actually
changing their own property values.

21 Group Objects

21-4

Transforms Supported by hgtransform
In this section...
“Transforming Objects” on page 21-5
“Rotation” on page 21-5
“Translation” on page 21-5
“Scaling” on page 21-6
“The Default Transform” on page 21-6
“Disallowed Transforms: Perspective” on page 21-6
“Disallowed Transforms: Shear” on page 21-6
“Absolute vs. Relative Transforms” on page 21-7
“Combining Transforms into One Matrix” on page 21-7
“Undoing Transform Operations” on page 21-8

Transforming Objects

The transform object's Matrix property applies a transform to all the object’s children in unison.
Transforms include rotation, translation, and scaling. Define a transform with a four-by-four
transformation matrix.

Creating a Transform Matrix

The makehgtform function simplifies the construction of matrices to perform rotation, translation,
and scaling. For information on creating transform matrices using makehgtform, see “Nest
Transforms for Complex Movements” on page 21-12.

Rotation
Rotation transforms follow the right-hand rule — rotate objects about the x-, y-, or z-axis, with
positive angles rotating counterclockwise, while sighting along the respective axis toward the origin.
If the angle of rotation is theta, the following matrix defines a rotation of theta about the x-axis.

To create a transform matrix for rotation about an arbitrary axis, use the makehgtform function.

Translation
Translation transforms move objects with respect to their current locations. Specify the translation as
distances tx, ty, and tz in data space units. The following matrix shows the location of these elements
in the transform matrix.

 Transforms Supported by hgtransform

21-5

Scaling
Scaling transforms change the sizes of objects. Specify scale factors sx, sy, and sz and construct the
following matrix.

You cannot use scale factors less than or equal to zero.

The Default Transform
The default transform is the identity matrix, which you can create with the eye function. Here is the
identity matrix.

See “Undoing Transform Operations” on page 21-8.

Disallowed Transforms: Perspective
Perspective transforms change the distance at which you view an object. The following matrix is an
example of a perspective transform matrix, which MATLAB graphics does not allow.

1 0 0 0
0 1 0 0
0 0 1 0
0 0 px 0

In this case, px is the perspective factor.

Disallowed Transforms: Shear
Shear transforms keep all points along a given line (or plane, in 3-D coordinates) fixed while shifting
all other points parallel to the line (plane) proportional to their perpendicular distance from the fixed

21 Group Objects

21-6

line (plane). The following matrix is an example of a shear transform matrix, which hgtransform
does not allow.

1 sx 0 0
0 1 0 0
0 0 1 0
0 0 0 1

In this case, sx is the shear factor and can replace any zero element in an identity matrix.

Absolute vs. Relative Transforms
Transforms are specified in absolute terms, not relative to the current transform. For example, if you
apply a transform that translates the transform object 5 units in the x direction, and then you apply
another transform that translates it 4 units in the y direction, the resulting position of the object is 4
units in the y direction from its original position.

If you want transforms to accumulate, you must concatenate the individual transforms into a single
matrix. See “Combining Transforms into One Matrix” on page 21-7.

Combining Transforms into One Matrix
It is usually more efficient to combine various transform operations into one matrix by concatenating
(multiplying) the individual matrices and setting the Matrix property to the result. Matrix
multiplication is not commutative, so the order in which you multiply the matrices affects the result.

For example, suppose you want to perform an operation that scales, translates, and then rotates.
Assuming R, T and S are your individual transform matrices, multiply the matrices as follows:

C = R*T*S % operations are performed from right to left

S is the scaling matrix, T is the translation matrix, R is the rotation matrix, and C is the composite of
the three operations. Then set the transform object's Matrix property to C:

hg = hgtransform('Matrix',C);

Multiplying the Transform by the Identity Matrix

The following sets of statements are not equivalent. The first set:

hg.Matrix = C;
hg.Matrix = eye(4);

results in the removal of the transform C. The second set:

I = eye(4);
C = I*R*T*S;
hg.Matrix = C;

applies the transform C. Concatenating the identity matrix to other matrices has no effect on the
composite matrix.

 Transforms Supported by hgtransform

21-7

Undoing Transform Operations
Because transform operations are specified in absolute terms (not relative to the current transform),
you can undo a series of transforms by setting the current transform to the identity matrix. For
example:

hg = hgtransform('Matrix',C);
...
hg.Matrix = eye(4);

returns the objects contained by the transform object, hg, to their orientation before applying the
transform C.

For more information on the identity matrix, see the eye function

See Also
hgtransform | makehgtform | eye

More About
• “Nest Transforms for Complex Movements” on page 21-12
• “Undoing Transform Operations” on page 21-8
• “Combining Transforms into One Matrix” on page 21-7

21 Group Objects

21-8

Rotate About an Arbitrary Axis
This example shows how to rotate an object about an arbitrary axis.

Translate to Origin Before Rotating
Rotations are performed about the origin. Therefore, you need to perform a translation so that the
intended axis of rotation is temporarily at the origin. After applying the rotation transform matrix,
you then translate the object back to its original position.

Rotate Surface

This example shows how to rotate a surface about the y-axis.

Create Surface and Transform

Parent the surface to the transform object.

t = hgtransform;
surf(peaks(40),'Parent',t)
view(-20,30)
axis manual

 Rotate About an Arbitrary Axis

21-9

Create Transform

Set a y-axis rotation matrix to rotate the surface by -15 degrees.

ry_angle = -15*pi/180;
Ry = makehgtform('yrotate',ry_angle);
t.Matrix = Ry;

The surface rotated -15 degrees about the y-axis that passes through the origin.

Translate the Surface and Rotate

Now rotate the surface about the y-axis that passes through the point x = 20.

Create two translation matrices, one to translate the surface -20 units in x and another to translate 20
units back. Concatenate the two translation matrices with the rotation matrix in the correct order and
set the transform.

Tx1 = makehgtform('translate',[-20 0 0]);
Tx2 = makehgtform('translate',[20 0 0]);
t.Matrix = Tx2*Ry*Tx1;

21 Group Objects

21-10

 Rotate About an Arbitrary Axis

21-11

Nest Transforms for Complex Movements
This example creates a nested hierarchy of transform objects, which are then transformed in
sequence to create a cube from six squares. The example illustrates how you can parent transform
objects to other transform objects to create a hierarchy, and how transforming members of a
hierarchy affects subordinate members.

Here is an illustration of the hierarchy.

21 Group Objects

21-12

The transform_foldbox function implements the transform hierarchy. The doUpdate function
renders each step. Place both functions in a file named transform_foldbox.m and execute
transform_foldbox.

function transform_foldbox
 % Create six square and fold
 % them into a cube

 Nest Transforms for Complex Movements

21-13

 figure

 % Set axis limits and view
 axes('Projection','perspective',...
 'XLim',[0 4],...
 'YLim',[0 4],...
 'ZLim',[0 3])
 view(3); axis equal; grid on

 % Create a hierarchy of transform objects
 t(1) = hgtransform;
 t(2) = hgtransform('parent',t(1));
 t(3) = hgtransform('parent',t(2));
 t(4) = hgtransform('parent',t(3));
 t(5) = hgtransform('parent',t(4));
 t(6) = hgtransform('parent',t(5));

 % Patch data
 X = [0 0 1 1];
 Y = [0 1 1 0];
 Z = [0 0 0 0];

 % Text data
 Xtext = .5;
 Ytext = .5;
 Ztext = .15;

 % Corresponding pairs of objects (patch and text)
 % are parented into the object hierarchy
 p(1) = patch('FaceColor','red','Parent',t(1));
 txt(1) = text('String','Bottom','Parent',t(1));
 p(2) = patch('FaceColor','green','Parent',t(2));
 txt(2) = text('String','Right','Parent',t(2));
 p(3) = patch('FaceColor','blue','Parent',t(3));
 txt(3) = text('String','Back','Color','white','Parent',t(3));
 p(4) = patch('FaceColor','yellow','Parent',t(4));
 txt(4) = text('String','Top','Parent',t(4));
 p(5) = patch('FaceColor','cyan','Parent',t(5));
 txt(5) = text('String','Left','Parent',t(5));
 p(6) = patch('FaceColor','magenta','Parent',t(6));
 txt(6) = text('String','Front','Parent',t(6));

 % All the patch objects use the same x, y, and z data
 set(p,'XData',X,'YData',Y,'ZData',Z)

 % Set the position and alignment of the text objects
 set(txt,'Position',[Xtext Ytext Ztext],...
 'HorizontalAlignment','center',...
 'VerticalAlignment','middle')

 % Display the objects in their current location
 doUpdate(1)

 % Set up initial translation transforms
 % Translate 1 unit in x
 Tx = makehgtform('translate',[1 0 0]);
 % Translate 1 unit in y
 Ty = makehgtform('translate',[0 1 0]);

21 Group Objects

21-14

 % Translate the unit squares to the desired locations
 % The drawnow and pause commands display
 % the objects after each translation
 set(t(2),'Matrix',Tx);
 doUpdate(1)
 set(t(3),'Matrix',Ty);
 doUpdate(1)
 set(t(4),'Matrix',Tx);
 doUpdate(1)
 set(t(5),'Matrix',Ty);
 doUpdate(1)
 set(t(6),'Matrix',Tx);
 doUpdate(1)

 % Specify rotation angle (pi/2 radians = 90 degrees)
 fold = pi/2;

 % Rotate -y, translate x
 Ry = makehgtform('yrotate',-fold);
 RyTx = Tx*Ry;

 % Rotate x, translate y
 Rx = makehgtform('xrotate',fold);
 RxTy = Ty*Rx;

 % Set the transforms
 % Draw after each group transform and pause
 set(t(6),'Matrix',RyTx);
 doUpdate(1)
 set(t(5),'Matrix',RxTy);
 doUpdate(1)
 set(t(4),'Matrix',RyTx);
 doUpdate(1)
 set(t(3),'Matrix',RxTy);
 doUpdate(1)
 set(t(2),'Matrix',RyTx);
 doUpdate(1)
end

function doUpdate(delay)
 drawnow
 pause(delay)
end

 Nest Transforms for Complex Movements

21-15

Controlling Graphics Output

• “Control Graph Display” on page 22-2
• “Prepare Figures and Axes for Graphs” on page 22-4
• “Use newplot to Control Plotting” on page 22-7
• “Responding to Hold State” on page 22-9
• “Prevent Access to Figures and Axes” on page 22-11

22

Control Graph Display
In this section...
“What You Can Control” on page 22-2
“Targeting Specific Figures and Axes” on page 22-2

What You Can Control
MATLAB allows many figure windows to be open simultaneously during a session. You can control
which figures and which axes MATLAB uses to display the result of plotting functions. You can also
control to what extent MATLAB clears and resets the properties of the targeted figures and axes.

You can modify the way MATLAB plotting functions behave and you can implement specific behaviors
in plotting functions that you write.

Consider these aspects:

• Can you prevent a specific figure or axes from becoming the target for displaying graphs?
• What happens to an existing graph when you plot more data to that graph? Is the existing graph

replaced or are new graphics objects added to the existing graph?

Targeting Specific Figures and Axes
By default, MATLAB plotting functions display graphs in the current figure and current axes (the
objects returned by gcf and gca respectively). You can direct the output to another figure and axes
by:

• Explicitly specifying the target axes with the plotting function.
• Making the target axes the current axes.

Specify the Target Axes

Suppose you create a figure with two axes, ax1 and ax2.

tiledlayout(1,2)
ax1 = nexttile;
ax2 = nexttile;

Call plot with the axes object as the first argument:

plot(ax1,1:10)

For plotting functions that do not support the axes first argument, set the Parent property:

t = 0:pi/5:2*pi;
patch(sin(t),cos(t),'y','Parent',ax2)

Make the Target Current

To specify a target, you can make a figure the current figure and an axes in that figure the current
axes. Plotting functions use the current figure and its current axes by default. If the current figure
has no current axes, MATLAB creates one.

22 Controlling Graphics Output

22-2

If fig is the handle to a figure, then the statement

figure(fig)

• Makes fig the current figure.
• Restacks fig to be the front-most figure displayed.
• Makes fig visible if it was not (sets the Visible property to 'on').
• Updates the figure display and processes any pending callbacks.

The same behavior applies to axes. If ax is the handle to an axes, then the statement

axes(ax)

• Makes ax the current axes.
• Restacks ax to be the front-most axes displayed.
• Makes ax visible if it was not.
• Updates the figure containing the axes and process any pending callbacks.

Make Figure or Axes Current Without Changing Other State

You can make a figure or axes current without causing a change in other aspects of the object state.
Set the root CurrentFigure property or the figure object's CurrentAxes property to the handle of
the figure or axes that you want to target.

If fig is the handle to an existing figure, the statement

r = groot;
r.CurrentFigure = fig;

makes fig the current figure. Similarly, if ax is the handle of an axes object, the statement

fig.CurrentAxes = ax;

makes it the current axes, if fig is the handle of the axes’ parent figure.

 Control Graph Display

22-3

Prepare Figures and Axes for Graphs

In this section...
“Behavior of MATLAB Plotting Functions” on page 22-4
“How the NextPlot Properties Control Behavior” on page 22-4
“Control Behavior of User-Written Plotting Functions” on page 22-5

Behavior of MATLAB Plotting Functions
MATLAB plotting functions either create a new figure and axes if none exist, or reuse an existing
figure and axes. When reusing existing axes, MATLAB

• Clears the graphics objects from the axes.
• Resets most axes properties to their default values.
• Calculates new axes limits based on the new data.

When a plotting function creates a graph, the function can:

• Create a figure and an axes for the graph and set necessary properties for the particular graph
(default behavior if no current figure exists)

• Reuse an existing figure and axes, clearing and resetting axes properties as required (default
behavior if a graph exists)

• Add new data objects to an existing graph without resetting properties (if hold is on)

The NextPlot figure and axes properties control the way that MATLAB plotting functions behave.

How the NextPlot Properties Control Behavior
MATLAB plotting functions rely on the values of the figure and axes NextPlot properties to
determine whether to add, clear, or clear and reset the figure and axes before drawing the new
graph. Low-level object-creation functions do not check the NextPlot properties. They simply add
the new graphics objects to the current figure and axes.

This table summarizes the possible values for the NextPlot properties.

NextPlot Figure Axes
new Creates a new figure and uses it

as the current figure.
Not an option for axes.

add Adds new graphics objects
without clearing or resetting the
current figure. (Default)

Adds new graphics objects
without clearing or resetting the
current axes.

replacechildren Removes all axes objects whose
handles are not hidden before
adding new objects. Does not
reset figure properties.
Equivalent to clf.

Removes all axes child objects
whose handles are not hidden
before adding new graphics
objects. Does not reset axes
properties. Equivalent to cla.

22 Controlling Graphics Output

22-4

NextPlot Figure Axes
replace Removes all axes objects and

resets figure properties to their
defaults before adding new
objects. Equivalent to clf
reset.

Removes all child objects and
resets axes properties to their
defaults before adding new
objects. Equivalent to cla
reset. (Default)

Plotting functions call the newplot function to obtain the handle to the appropriate axes.

The Default Scenario

Consider the default situation where the figure NextPlot property is add and the axes NextPlot
property is replace. When you call newplot, it:

1 Checks the value of the current figure's NextPlot property (which is, add).
2 Determines that MATLAB can draw into the current figure without modifying the figure. If there

is no current figure, newplot creates one, but does not recheck its NextPlot property.
3 Checks the value of the current axes' NextPlot property (which is, replace), deletes all

graphics objects from the axes, resets all axes properties (except Position and Units) to their
defaults, and returns the handle of the current axes. If there is no current axes, newplot creates
one, but does not recheck its NextPlot property.

4 Deletes all graphics objects from the axes, resets all axes properties (except Position and
Units) to their defaults, and returns the handle of the current axes. If there is no current axes,
newplot creates one, but does not recheck its NextPlot property.

hold Function and NextPlot Properties

The hold function provides convenient access to the NextPlot properties. When you want add
objects to a graph without removing other objects or resetting properties use hold on:

• hold on — Sets the figure and axes NextPlot properties to add. Line graphs continue to cycle
through the ColorOrder and LineStyleOrder property values.

• hold off — Sets the axes NextPlot property to replace

Use the ishold to determine if hold is on or off.

Control Behavior of User-Written Plotting Functions
MATLAB provides the newplot function to simplify writing plotting functions that conform to the
settings of the NextPlot properties.

newplot checks the values of the NextPlot properties and takes the appropriate action based on
these values. Place newplot at the beginning of any function that calls object creation functions.

When your function calls newplot, newplot first queries the figure NextPlot property. Based on
the property values newplot then takes the action described in the following table based on the
property value.

Figure NextPlot Property
Value

newplot Function

No figures exist Creates a figure and makes this figure the current figure.

 Prepare Figures and Axes for Graphs

22-5

Figure NextPlot Property
Value

newplot Function

add Makes the figure the current figure.
new Creates a new figure and makes it the current figure.
replacechildren Deletes the figure's children (axes objects and their descendants)

and makes this figure the current figure.
replace Deletes the figure's children, resets the figure's properties to their

defaults, and makes this figure the current figure.

Then newplot checks the current axes' NextPlot property. Based on the property value newplot
takes the action described in the following table.

Axes NextPlot Property Value newplot Function
No axes in current figure Creates an axes and makes it the current axes
add Makes the axes the current axes and returns its handle.
replacechildren Deletes the axes' children and makes this axes the current axes.
replace Deletes the axes' children, reset the axes' properties to their

defaults, and makes this axes the current axes.

22 Controlling Graphics Output

22-6

Use newplot to Control Plotting
This example shows how to prepare figures and axes for user-written plotting functions. Use dot
notation to set properties.

Use newplot to manage the output from specialized plotting functions. The myPlot2D function:

• Customizes the axes and figure appearance for a particular publication requirement.
• Uses revolving line styles and a single color for multiline graphs.
• Adds a legend with specified display names.

function myPlot2D(x,y)
 % Call newplot to get the axes handle
 cax = newplot;
 % Customize axes
 cax.FontName = 'Times';
 cax.FontAngle = 'italic';
 % Customize figure
 fig = cax.Parent;
 fig.MenuBar= 'none';
 % Call plotting commands to
 % produce custom graph
 hLines = line(x,y,...
 'Color',[.5,.5,.5],...
 'LineWidth',2);
 lso = ['- ';'--';': ';'-.'];
 setLineStyle(hLines)
 grid on
 legend('show','Location','SouthEast')
 function setLineStyle(hLines)
 style = 1;
 for ii = 1:length(hLines)
 if style > length(lso)
 style = 1;
 end
 hLines(ii).LineStyle = lso(style,:);
 hLines(ii).DisplayName = num2str(style);
 style = style + 1;
 end
 end
end

This graph shows typical output for the myPlot2D function:

x = 1:10;
y = peaks(10);
myPlot2D(x,y)

 Use newplot to Control Plotting

22-7

The myPlot2D function shows the basic structure of a user-written plotting functions:

• Call newplot to get the handle of the target axes and to apply the settings of the NextPlot
properties of the axes and figure.

• Use the returned axes handle to customize the axes or figure for this specific plotting function.
• Call plotting functions (for example, line and legend) to implement the specialized graph.

Because myPlot2D uses the handle returned by newplot to access the target figure and axes, this
function:

• Adheres to the behavior of MATLAB plotting functions when clearing the axes with each
subsequent call.

• Works correctly when hold is set to on

The default settings for the NextPlot properties ensure that your plotting functions adhere to the
standard MATLAB behavior — reuse the figure window, but clear and reset the axes with each new
graph.

22 Controlling Graphics Output

22-8

Responding to Hold State
This example shows how to test for hold state and respond appropriately in user-defined plotting
functions.

Plotting functions usually change various axes parameters to accommodate different data. The
myPlot3D function:

• Uses a 2-D or 3-D view depending on the input data.
• Respects the current hold state, to be consistent with the behavior of MATLAB plotting functions.

function myPlot3D(x,y,z)
 % Call newplot to get the axes handle
 cax = newplot;
 % Save current hold state
 hold_state = ishold;
 % Call plotting commands to
 % produce custom graph
 if nargin == 2
 line(x,y);
 % Change view only if hold is off
 if ~hold_state
 view(cax,2)
 end
 elseif nargin == 3
 line(x,y,z);
 % Change view only if hold is off
 if ~hold_state
 view(cax,3)
 end
 end
 grid on
end

For example, the first call to myPlot3D creates a 3-D graph. The second call to myPlot3D adds the 2-
D data to the 3-D view because hold is on.

[x,y,z] = peaks(20);
myPlot3D(x,y,z)
hold on
myPlot3D(x,y)

 Responding to Hold State

22-9

22 Controlling Graphics Output

22-10

Prevent Access to Figures and Axes

In this section...
“Why Prevent Access” on page 22-11
“How to Prevent Access” on page 22-11

Why Prevent Access
In some situations it is important to prevent particular figures or axes from becoming the target for
graphics output. That is, prevent them from becoming the current figure, as returned by gcf, or the
current axes, as returned by gca.

You might want to prevent access to a figure containing the controls that implement a user interface.
Or, you might want to prevent access to an axes that is part of an application program accessed only
by the application.

How to Prevent Access
Prevent MATLAB functions from targeting a particular figure or axes by removing their handles from
the list of visible handles.

Two properties control handle visibility: HandleVisibility and ShowHiddenHandles

HandleVisibility is a property of all graphics objects. It controls the visibility of the object’s
handle to three possible values:

• 'on' — You can obtain the object's handle with functions that return handles, such as (gcf, gca,
gco, get, and findobj). This is the default behavior.

• 'callback' — The object's handle is visible only within the workspace of a callback function.
• 'off' — The handle is hidden from all functions executing in the command window and in

callback functions.

Properties Affected by Handle Visibility

When an object’s HandleVisibility is set to 'callback' or 'off':

• The object's handle does not appear in its parent's Children property.
• Figures do not appear in the root's CurrentFigure property.
• Axes do not appear in the containing figure's CurrentAxes property.
• Graphics objects do not appear in the figure's CurrentObject property.

Functions Affected by Handle Visibility

When a handle is not visible in its parent's list of children, functions that obtain handles by searching
the object hierarchy cannot return the handle. These functions include get, findobj, gca, gcf, gco,
newplot, cla, clf, and close.

 Prevent Access to Figures and Axes

22-11

Values Returned by gca and gcf

When a hidden-handle figure is topmost on the screen, but has visible-handle figures stacked behind
it, gcf returns the topmost visible-handle figure in the stack. The same behavior is true for gca. If no
visible-handle figures or axes exist, calling gcf or gca creates one.

Access Hidden-Handle Objects

The root ShowHiddenHandles property enables and disables handle visibility control. By default,
ShowHiddenHandles is 'off', which means MATLAB follows the setting of every object’s
HandleVisibility property.

Setting ShowHiddenHandles to on is equivalent to setting the HandleVisibility property of all
objects in the graphics hierarchy to on.

Note Axes title and axis label text objects are not children of the axes. To access the handles of these
objects, use the axes Title, XLabel, YLabel, and ZLabel properties.

The close function also allows access to hidden-handle figures using the hidden option. For
example:

close('hidden')

closes the topmost figure on the screen, even if its handle is hidden.

Combining all and hidden options:

close('all','hidden')

closes all figures.

Handle Validity Versus Handle Visibility

All handles remain valid regardless of the state of their HandleVisibility property. If you have
assigned an object handle to a variable, you can always set and get its properties using that handle
variable.

22 Controlling Graphics Output

22-12

Developing Classes of Chart Objects

• “Chart Development Overview” on page 23-2
• “Write Constructors for Chart Classes” on page 23-9
• “Develop Charts With Polar Axes, Geographic Axes, or Multiple Axes” on page 23-13
• “Managing Properties of Chart Classes” on page 23-17
• “Enabling Convenience Functions for Setting Axes Properties” on page 23-25
• “Saving and Loading Instances of Chart Classes” on page 23-31
• “Chart Class with Custom Property Display” on page 23-38
• “Chart Class with Variable Number of Lines” on page 23-41
• “Optimized Chart Class for Displaying Variable Number of Lines” on page 23-44
• “Chart Class for Displaying Variable Size Tiling of Plots” on page 23-48
• “Chart Class Containing Two Interactive Plots” on page 23-51

23

Chart Development Overview
Charting functions such as plot, scatter, and bar enable you to quickly visualize your data with
basic control over aspects such as color and line style. To create custom charts, you can combine
multiple graphics objects, set properties on those objects, or call additional functions. In R2019a and
earlier releases, a common way to store your customization code and share it with others is to write a
script or a function.

Starting in R2019b, you can create a class implementation for your charts by defining a subclass of
the ChartContainer base class. Creating a class enables you to:

• Provide a convenient interface for your users — When users want to customize an aspect of your
chart, they can set a property rather than having to modify and rerun your graphics code. Users
can modify properties at the command line or inspect them in the Property Inspector.

• Encapsulate algorithms and primitive graphics objects — You implement methods that perform
calculations and manage the underlying graphics objects. Organizing your code in this way allows
you to hide implementation details from your users.

When you define a chart that derives from this base class, instances of your chart are members of the
graphics object hierarchy. As a result, your charts are compatible with many aspects of the graphics
system. For example, the gca and findobj functions can return instances of your chart.

Structure of a Chart Class
The first line of a chart class specifies the matlab.graphics.chartcontainer.ChartContainer
class as the superclass. For example, the first line of a class called ConfidenceChart looks like this:

classdef ConfidenceChart < matlab.graphics.chartcontainer.ChartContainer

In addition to specifying the superclass, include the following components in your class definition.

Component Description
Public property block on
page 23-3
(recommended)

This block defines all the properties that you want your users to have
access to. Together, these properties make up the user interface of your
chart.

Private property block
on page 23-3
(recommended)

This block stores the underlying graphics objects and other
implementation details that you do not want your users to access.

In this block, set these attribute values:

• Access = private
• Transient
• NonCopyable

setup method on page
23-4
(required)

This method sets the initial state of the chart. It executes once when
MATLAB constructs the object.

Define this method in a protected block.

23 Developing Classes of Chart Objects

23-2

Component Description
update method on
page 23-5
(required)

This method updates the underlying objects in your chart. It executes
during the next drawnow execution, after the user changes one or more
property values.

Define this method in the same protected block as the setup method.

Implicit Constructor Method
You do not have to write a constructor method for your class because a constructor is inherited from
the ChartContainer base class. The constructor accepts optional input arguments: a parent
container and any number of name-value pair arguments for setting properties on the chart. For
example, if you define a class called ConfidenceChart that has the public properties XData and
YData, you can create an instance of your class using either of these commands:

c = ConfidenceChart(gcf,'XData',[1 2 3],'YData',[4 5 6])
c = ConfidenceChart('XData',[1 2 3],'YData',[4 5 6])

If you want to provide an interface that accepts input arguments in the same way as a typical function
does, you can define a custom constructor method. See “Write Constructors for Chart Classes” on
page 23-9 for more information.

Public and Private Property Blocks
Divide your class properties between at least two blocks:

• A public block for storing the components of the user-facing interface
• A private block for storing the implementation details that you want to hide

The properties that go in the public block store the input values provided by the user. For example, a
chart that displays a line might store the x- and y-coordinate vectors in two public properties. Since
the property name-value pair arguments are optional inputs to the implicit constructor method, the
recommended approach is to initialize the public properties to default values. If you define public
properties that store coordinate values, initializing them to NaN values or empty arrays constructs an
empty chart if the user calls the constructor without any inputs.

The properties that go in the private block store the underlying graphics objects that make up your
chart, in addition to any calculated values you want to store. Eventually, your class will use the data
in the public properties to configure the underlying objects. By including the Transient and
NonCopyable attributes for the private block, you avoid storing redundant information if the user
copies or saves an instance of the chart.

For example, here are the property blocks for a chart that displays a Line object and a Patch object.
The public property block stores values that the user can control: the x- and y-coordinates of the line,
a confidence margin value, a marker symbol, and a color value. The private property block stores the
Line and Patch objects.

properties
 XData = NaN
 YData = NaN
 ConfidenceMargin = 0.15
 MarkerSymbol = 'o'
 Color = [1 0 0]

 Chart Development Overview

23-3

end

properties(Access = private,Transient,NonCopyable)
 LineObject
 PatchObject
end

Setup Method
The setup method executes once when MATLAB constructs the chart object. Any property values
passed as name-value pair arguments to the constructor method are assigned after this method
executes.

Use the setup method to:

• Call plotting functions to create the primitive graphics objects you want to use in the chart.
• Store the primitive objects returned by the plotting functions as private properties on the chart

object.
• Configure the primitive graphics objects.
• Configure the axes.

Many graphics functions have an optional input argument for specifying the target axes object. These
functions include plotting functions (such as plot, scatter, and bar) and functions that modify the
axes (such as hold, grid, and title). When you call these types of functions from within a class
method, you must specify the target axes object. You can access the axes object by calling the
getAxes method. This method returns the axes object, or it creates a Cartesian axes object if the
chart does not already contain an axes object.

Caution Calling plotting functions, or functions that modify the axes, without specifying the target
axes might produce unexpected results.

When you call plotting functions in the setup method, specify temporary values (such as NaN) for the
coordinate data. Also, specify temporary values for other arguments that correspond to public
properties of your class. Doing so avoids setting the same property values in both the setup and the
update methods.

If you want to display multiple primitive objects in the axes, call the hold function between plotting
commands. Set the hold state back to 'off' after your last plotting command.

For example, consider a chart that displays a line and a patch. It has these properties:

• Two public properties called XData and YData for storing the x- and y-coordinates of the line
• Two private properties called LineObject and PatchObject

The setup method gets the axes object by calling the getAxes method. Then it calls the patch
function and stores the output in the PatchObject property. The next line of code set the hold state
of the axes to 'on' before calling the plot function to create the LineObject property. The last line
of code sets the axes hold state back to 'off'.

function setup(obj)
 % Get the axes
 ax = getAxes(obj);

23 Developing Classes of Chart Objects

23-4

 % Create Patch and Line objects
 obj.PatchObject = patch(ax,NaN,NaN,'r','FaceAlpha',0.2,...
 'EdgeColor','none');
 hold(ax,'on')
 obj.LineObject = plot(ax,NaN,NaN);

 % Turn hold state off
 hold(ax,'off')
end

Update Method
When the user changes one or more property values on the chart object, MATLAB marks the chart
object for updating. The update method runs for the first time after the setup method runs. Then it
runs the next time drawnow executes. The drawnow function automatically executes periodically,
based on the state of the graphics environment in the user's MATLAB session. Thus, there might be a
delay between changing property values and seeing the results of those changes.

Use the update method to reconfigure the underlying graphics objects in your chart based on the
new values of the public properties. Typically, this method does not distinguish which of the public
properties changed. It reconfigures all aspects of the underlying graphics objects that depend on the
public properties.

For example, consider a chart that has these properties:

• Two public properties called XData and Color
• Two private properties called LineObject and PatchObject

The update method updates the XData and Color properties of the Line and Patch objects.

function update(obj)

 % Update XData of line object
 obj.LineObject.XData = obj.XData;

 % Update patch XData
 x = obj.XData;
 obj.PatchObject.XData = [x x(end:-1:1)];

 % Update line object colors
 obj.LineObject.Color = obj.Color;
 obj.PatchObject.FaceColor = obj.Color;

end

Example: Confidence Bounds Chart
This example shows how to create a chart for plotting a line with confidence bounds. Create a class
definition file named ConfidenceChart.m in a folder that is on the MATLAB path. Define the class
by following these steps.

 Chart Development Overview

23-5

Step Implementation
Derive from the
ChartContainer base
class.

classdef ConfidenceChart < matlab.graphics.chartcontainer.ChartContainer

Define public
properties.

 properties
 XData = NaN
 YData = NaN
 ConfidenceMargin = 0.15
 MarkerSymbol = 'o'
 Color = [1 0 0]
 end

Define private
properties.

 properties(Access = private,Transient,NonCopyable)
 LineObject
 PatchObject
 end

Implement the setup
method. In this case,
call the plot and
patch functions to
create the Patch and
Line objects
respectively. Store those
objects in the
corresponding private
properties.

Turn the hold state of
the axes back to 'off'
before exiting the
method.

 methods(Access = protected)
 function setup(obj)
 % get the axes
 ax = getAxes(obj);

 % Create Patch and Line objects
 obj.PatchObject = patch(ax,NaN,NaN,'r','FaceAlpha',0.2,...
 'EdgeColor','none');
 hold(ax,'on')
 obj.LineObject = plot(ax,NaN,NaN);

 % Turn hold state off
 hold(ax,'off')
 end

Implement the update
method. In this case,
update the x- and y-
coordinates, color, and
marker symbol of the
underlying objects.

 function update(obj)
 % Update XData and YData of Line
 obj.LineObject.XData = obj.XData;
 obj.LineObject.YData = obj.YData;

 % Update patch XData and YData
 x = obj.XData;
 obj.PatchObject.XData = [x x(end:-1:1)];
 y = obj.YData;
 c = obj.ConfidenceMargin;
 obj.PatchObject.YData = [y+c y(end:-1:1)-c];

 % Update colors
 obj.LineObject.Color = obj.Color;
 obj.PatchObject.FaceColor = obj.Color;

 % Update markers
 obj.LineObject.Marker = obj.MarkerSymbol;
 end
 end
end

23 Developing Classes of Chart Objects

23-6

Next, create an instance of the chart by calling the implicit constructor method with a few of the
public properties:

x = 0:0.2:10;
y = besselj(0,x);
c = ConfidenceChart('XData',x,'YData',y,'ConfidenceMargin',0.15);

Change the color.

c.Color = [0 0 1];

 Chart Development Overview

23-7

Tip In addition to the examples provided in the documentation, you can find a variety of community
authored examples on File Exchange at MATLAB Central™.

Support Common Graphics Features
By default, instances of your charts support much of the functionality that is common to all MATLAB
charts. For example, the gca and findobj functions can return instances of your chart. You can also
pass instances of your chart to the set and get functions, and you can configure the properties of
the chart in the Property Inspector.

The features described in this table are supported only if you enable them for your chart.

Feature Description More Information
Legend Enable the legend function and the legend tool in the

figure toolbar.
matlab.graphics.char
tcontainer.mixin.Leg
end

Colorbar Enable the colorbar function and the colorbar tool in
the figure toolbar.

matlab.graphics.char
tcontainer.mixin.Col
orbar

Different types
of axes, or
multiple axes

Display one or more Cartesian, polar, or geographic
plots.

“Develop Charts With
Polar Axes, Geographic
Axes, or Multiple Axes” on
page 23-13

functions Enable functions that set properties on the axes, such
as title, xlim, and ylim functions.

“Enabling Convenience
Functions for Setting Axes
Properties” on page 23-
25

Saving and
loading

Store changes after users interact with the chart, so
that they can save the chart and restore its state when
they load it back into MATLAB.

“Saving and Loading
Instances of Chart
Classes” on page 23-31

See Also
Classes
matlab.graphics.chartcontainer.ChartContainer

Functions
plot | patch

Properties
Line | Patch

More About
• “Define Classes”
• “Develop Charts With Polar Axes, Geographic Axes, or Multiple Axes” on page 23-13

23 Developing Classes of Chart Objects

23-8

https://www.mathworks.com/matlabcentral/fileexchange/?term=tag:%22chartcontainer%22&s_tid=OIT_25512

Write Constructors for Chart Classes
When you develop a chart as a subclass of the ChartContainer base class, the base class provides a
default constructor that accepts optional name-value pair arguments for setting chart properties. For
example, this command creates an instance of a class called ConfidenceChart.

ConfidenceChart('XData',x,'YData',y,'ConfidenceMargin',0.15,'Color',[1 0 0])

By writing a custom constructor method, you can provide an interface that accepts individual
argument values and optional name-value pair arguments. For example, you can design a custom
constructor to change the calling syntax for ConfidenceChart so that both of these commands are
valid ways to create the chart:

ConfidenceChart(x,y,0.15)
ConfidenceChart(x,y,0.15,'Color',[1 0 0])

When you write the constructor method:

• Specify the input arguments you want to support in the function declaration. Include varargin as
the last input argument to capture any property name-value pair arguments that the user
specifies.

• Call the ChartContainer constructor before all other references to the chart object.

For example, the following constructor method for the ConfidenceChart class performs these
tasks:

• Checks the number of input arguments and returns an error if the number is less than three.
• Converts the x, y, and margin values to the name-value pair arguments that the

ChartContainer constructor accepts, and stores the results in args.
• Appends any user-specified name-value pair arguments to the end of args.
• Passes args to the ChartContainer constructor method.

methods
 function obj = ConfidenceChart(x,y,margin,varargin)
 % Check for at least three inputs
 if nargin < 3
 error('Not enough inputs');
 end

 % Convert x, y, and margin into name-value pairs
 args = {'XData', x, 'YData', y, 'ConfidenceMargin', margin};

 % Combine args with user-provided name-value pairs
 args = [args varargin];

 % Call superclass constructor method
 obj@matlab.graphics.chartcontainer.ChartContainer(args{:});
 end
end

 Write Constructors for Chart Classes

23-9

Example: Confidence Bounds Chart with Custom Constructor
This example shows how to develop a chart that has a custom constructor that accepts single-value
input arguments and optional name-value pair arguments. The chart plots a line with markers and a
surrounding confidence margin.

Create a program file named ConfidenceChart.m in a folder that is on the MATLAB path. Define
the class by following these steps.

Step Implementation
Derive from the
ChartContainer base
class.

classdef ConfidenceChart < matlab.graphics.chartcontainer.ChartContainer

Define public
properties.

 properties
 XData (1,:) double = NaN
 YData (1,:) double = NaN
 ConfidenceMargin (1,1) double = 0.15
 MarkerSymbol (1,:) char = 'o'
 Color (1,3) double {mustBeGreaterThanOrEqual(Color,0),...
 mustBeLessThanOrEqual(Color,1)} = [1 0 0]
 end

Define private
properties.

 properties(Access = private,Transient,NonCopyable)
 LineObject (1,1) matlab.graphics.chart.primitive.Line
 PatchObject (1,1) matlab.graphics.primitive.Patch
 end

Implement the custom
constructor method that
accepts the x, y, and
margin values and
optional property name-
value pair arguments.

 methods
 function obj = ConfidenceChart(x,y,margin,varargin)
 % Check for at least three inputs
 if nargin < 3
 error('Not enough inputs');
 end

 % Convert x, y, and margin into name-value pairs
 args = {'XData', x, 'YData', y, 'ConfidenceMargin', margin};

 % Combine args with user-provided name-value pairs.
 args = [args varargin];

 % Call superclass constructor method
 obj@matlab.graphics.chartcontainer.ChartContainer(args{:});
 end
 end

Implement the setup
method.

 methods(Access = protected)
 function setup(obj)
 % get the axes
 ax = getAxes(obj);

 % Create Patch and objects
 obj.PatchObject = patch(ax,NaN,NaN,'r','FaceAlpha',0.2,...
 'EdgeColor','none');
 hold(ax,'on')
 obj.LineObject = plot(ax,NaN,NaN);
 hold(ax,'off')
 end

23 Developing Classes of Chart Objects

23-10

Step Implementation
Implement the update
method.

 function update(obj)
 % Update XData and YData of Line
 obj.LineObject.XData = obj.XData;
 obj.LineObject.YData = obj.YData;

 % Update patch XData and YData
 x = obj.XData;
 obj.PatchObject.XData = [x x(end:-1:1)];
 y = obj.YData;
 c = obj.ConfidenceMargin;
 obj.PatchObject.YData = [y+c y(end:-1:1)-c];

 % Update colors
 obj.LineObject.Color = obj.Color;
 obj.PatchObject.FaceColor = obj.Color;

 % Update markers
 obj.LineObject.Marker = obj.MarkerSymbol;
 end
 end
end

Next, create an instance of a ConfidenceChart. Specify the x- and y-coordinates, the margin value,
and a marker symbol.

x = 0:0.2:10;
y = besselj(0,x);
ConfidenceChart(x,y,0.20,'MarkerSymbol','>');

See Also
Classes
matlab.graphics.chartcontainer.ChartContainer

 Write Constructors for Chart Classes

23-11

Functions
plot | patch

Properties
Line | Patch

More About
• “Class Constructor Methods”
• “Call Superclass Methods on Subclass Objects”
• “Chart Development Overview” on page 23-2

23 Developing Classes of Chart Objects

23-12

Develop Charts With Polar Axes, Geographic Axes, or Multiple
Axes

For charts you develop as a subclass of the ChartContainer base class, the getAxes method
provides a way to support a single Cartesian axes object. If you want to support polar axes,
geographic axes, or multiple axes, you must create and configure the axes as children of a
TiledChartLayout object, which is stored in the chart object.

Create a Single Polar or Geographic Axes Object
To include a single polar axes or geographic axes object in your chart:

1 Define a private property to store the axes.
2 In the setup method:

• Call the getLayout method to get the TiledChartLayout object.
• Call the polaraxes or geoaxes function to create the axes, and specify the

TiledChartLayout object as the parent object.

For example, here is a basic class that contains a polar axes object.

classdef SimplePolar < matlab.graphics.chartcontainer.ChartContainer
 properties(Access = private,Transient,NonCopyable)
 PolarAx matlab.graphics.axis.PolarAxes
 end

 methods(Access = protected)
 function setup(obj)
 % Get the layout and create the axes
 tcl = getLayout(obj);
 obj.PolarAx = polaraxes(tcl);

 % Other setup code
 % ...
 end
 function update(obj)
 % Update the chart
 % ...
 end
 end
end

Create a Tiling of Multiple Axes Objects
To display a tiling of multiple axes:

1 Define private properties that store the axes objects. You can also define one property that stores
an array of axes objects.

2 In the setup method:

• Call the getLayout method to get the TiledChartLayout object.
• Set the GridSize property of the TiledChartLayout object so that it has at least one tile

for each of the axes.

 Develop Charts With Polar Axes, Geographic Axes, or Multiple Axes

23-13

• Call the axes, polaraxes, or geoaxes function to create the axes objects, and specify the
TiledChartLayout object as the parent object.

• Move each of the axes to the desired tile by setting the Layout property on each axes object.
By default, the axes appear in the first tile.

For example, here is a basic class that contains two Cartesian axes:

classdef TwoAxesChart < matlab.graphics.chartcontainer.ChartContainer
 properties(Access = private,Transient,NonCopyable)
 Ax1 matlab.graphics.axis.Axes
 Ax2 matlab.graphics.axis.Axes
 end

 methods(Access = protected)
 function setup(obj)
 % Get the layout and set the grid size
 tcl = getLayout(obj);
 tcl.GridSize = [2 1];

 % Create the axes
 obj.Ax1 = axes(tcl);
 obj.Ax2 = axes(tcl);

 % Move the second axes to the second tile
 obj.Ax2.Layout.Tile = 2;
 end
 function update(obj)
 % Update the chart
 % ...
 end
 end
end

Example: Chart Containing Geographic and Cartesian Axes

This example shows how to define a class of charts for visualizing geographic and categorical data
using two axes. The left axes contains a map showing the locations of several cellular towers. The
right axes shows the distribution of the towers by category.

The following TowerChart class definition shows how to:

• Define a public property called TowerData that stores a table.
• Validate the contents of the table using a local function called mustHaveRequiredVariables.
• Define two private properties called MapAxes and HistogramAxes that store the axes.
• Implement a setup method that gets the TiledChartLayout object, specifies the grid size of the

layout, and positions the axes.

To define the class, copy this code into the editor and save it with the name TowerChart.m in a
writable folder.

classdef TowerChart < matlab.graphics.chartcontainer.ChartContainer
 properties

23 Developing Classes of Chart Objects

23-14

 TowerData (:,:) table {mustHaveRequiredVariables} = table([],...
 [],[],'VariableNames',{'STRUCTYPE','Latitude','Longitude'})
 end

 properties (Access = private,Transient,NonCopyable)
 MapAxes matlab.graphics.axis.GeographicAxes
 HistogramAxes matlab.graphics.axis.Axes
 ScatterObject matlab.graphics.chart.primitive.Scatter
 HistogramObject matlab.graphics.chart.primitive.categorical.Histogram
 end

 methods (Access = protected)
 function setup(obj)
 % Configure layout and create axes
 tcl = getLayout(obj);
 tcl.GridSize = [1 2];
 obj.MapAxes = geoaxes(tcl);
 obj.HistogramAxes = axes(tcl);

 % Move histogram axes to second tile
 obj.HistogramAxes.Layout.Tile = 2;

 % Create Scatter and Histogram objects
 obj.ScatterObject = geoscatter(obj.MapAxes,NaN,NaN,'.');
 obj.HistogramObject = histogram(obj.HistogramAxes,categorical.empty,...
 'Orientation','horizontal');

 % Add titles to the axes
 title(obj.MapAxes,"Tower Locations")
 title(obj.HistogramAxes,"Tower Types")
 xlabel(obj.HistogramAxes,"Number of Towers")
 end

 function update(obj)
 % Update Scatter object
 obj.ScatterObject.LatitudeData = obj.TowerData.Latitude;
 obj.ScatterObject.LongitudeData = obj.TowerData.Longitude;

 % Get tower types from STRUCTYPE table variable
 towertypes = obj.TowerData.STRUCTYPE;

 % Check for empty towertypes before updating histogram
 if ~isempty(towertypes)
 obj.HistogramObject.Data = towertypes;
 obj.HistogramObject.Categories = categories(towertypes);
 else
 obj.HistogramObject.Data = categorical.empty;
 end
 end
 end
end

function mustHaveRequiredVariables(tbl)
% Return error if table does not have required variables
assert(all(ismember({'STRUCTYPE','Latitude','Longitude'},...
 tbl.Properties.VariableNames)),...
 'MATLAB:TowerChart:InvalidTable',...
 'Table must have STRUCTYPE, Latitude, and Longitude variables.');

 Develop Charts With Polar Axes, Geographic Axes, or Multiple Axes

23-15

end

After saving the class file, load the table stored in cellularTowers.mat. Then create an instance of
the chart by passing the table to the TowerChart constructor method as a name-value pair
argument.

load cellularTowers.mat
TowerChart('TowerData',cellularTowers);

See Also
Functions
getLayout

Classes
matlab.graphics.chartcontainer.ChartContainer

Properties
TiledChartLayout Properties

More About
• “Chart Development Overview” on page 23-2

23 Developing Classes of Chart Objects

23-16

Managing Properties of Chart Classes
When you develop a custom chart as a subclass of the ChartContainer base class, you can use
certain techniques to make your code more robust, efficient, and tailored to the needs of your users.
These techniques focus on how you define and manage the properties of your class. Use any that are
helpful for the type of visualization you want to create and the user experience you want to provide.

• Initialize property values on page 23-17 — Set the default state of the chart in case your users
call the implicit constructor without any input arguments.

• Validate property values on page 23-17 — Ensure that the values are valid before using them to
perform a calculation or configure one of the underlying graphics objects in your chart.

• Customize the property display on page 23-18 — Provide a customized list of properties when a
user references the chart object without semicolon.

• Optimize the update method on page 23-19 — Improve the performance of the update method
when only a subset of your properties are used in a time-consuming calculation.

Initialize Property Values
Assign default values for all of the public properties of your class. Doing so configures a valid chart if
the user omits some of the name-value pair arguments when they call the constructor method.

For properties that store coordinate data, set the initial values to NaN values or empty arrays so that
the default chart is empty when the user does not specify the coordinates. Choose the default
coordinates according to the requirements of the plotting functions you plan to call in your class
methods. To learn about the requirements, see the documentation for the plotting functions you plan
to use.

Validate Property Values
A good practice is to verify the values of your class properties before your code uses those values. A
convenient way to do this is to validate the size and class of the properties as you define them. For
example, this property block validates the size and class of four properties.

properties
 IsoValue (1,1) double = 0.5
 Enclose {mustBeMember(Enclose,{'above','below'})} = 'below'
 CapVisible (1,1) matlab.lang.OnOffSwitchState = 'on'
 Color (1,3) double {mustBeGreaterThanOrEqual(Color,0),...
 mustBeLessThanOrEqual(Color,1)} = [.2 .5 .8]
end

• IsoValue must be a 1-by-1 array of class double.
• Enclose must have a value of either 'above' or 'below'.
• CapVisible must be a 1-by-1 array of class matlab.lang.OnOffSwitchState.
• Color must be a 1-by-3 array of class double, where each value is in the range [0,1].

You can also validate properties that store the underlying graphics objects in your chart. To
determine the class name of an object, call the corresponding plotting function at the command line,
and then call the class function to get the class name. For example, if you plan to call the patch
function in your setup method, call the patch function at the command line with an output

 Managing Properties of Chart Classes

23-17

argument (the input arguments do not matter). Then pass the output to the class function to get its
class name.

x = patch(NaN,NaN,NaN);
class(x)

ans =

 'matlab.graphics.primitive.Patch'

Use the output of the class function to validate the class for the corresponding property in your
class. For example, each of the following properties stores a Patch object.

properties (Access = private,Transient,NonCopyable)
 IsoPatch (1,1) matlab.graphics.primitive.Patch
 CapPatch (1,1) matlab.graphics.primitive.Patch
end

Occasionally, you might want to define a property that can store different shapes and classes of
values. For example, if you define a property that can store a character vector, cell array of character
vectors, or string array, omit the size and class validation or use a custom property validation method.

For more information about validating properties, see “Validate Property Values”.

Customize the Property Display
One of the benefits of defining your chart as a subclass of the ChartContainer base class is that it
also inherits from the matlab.mixin.CustomDisplay class. Thus, you can customize the list of
properties MATLAB displays in the Command Window when you reference the chart without a
semicolon. To customize the property display, overload the getPropertyGroups method. Within that
method, you can customize which properties are listed and the order of the list. For example,
consider an IsoSurfCapChart class that has the following public properties.

properties
 IsoValue (1,1) double = 0.5
 Enclose {mustBeMember(Enclose,{'above','below'})} = 'below'
 CapVisible (1,1) matlab.lang.OnOffSwitchState = 'on'
 Color (1,3) double {mustBeGreaterThanOrEqual(Color,0),...
 mustBeLessThanOrEqual(Color,1)} = [.2 .5 .8]
end

The following getPropertyGroups method specifies the scalar object property list as Color,
IsoValue, Enclose, and CapVisible.

function propgrp = getPropertyGroups(obj)
 if ~isscalar(obj)
 % List for array of objects
 propgrp = getPropertyGroups@matlab.mixin.CustomDisplay(obj);
 else
 % List for scalar object
 propList = {'Color','IsoValue','Enclose','CapVisible'};
 propgrp = matlab.mixin.util.PropertyGroup(propList);
 end
end

When the user references an instance of this chart without a semicolon, MATLAB displays the
customized list.

23 Developing Classes of Chart Objects

23-18

c = IsoSurfCapChart

c =

 IsoSurfCapChart with properties:

 Color: [0.2000 0.5000 0.8000]
 IsoValue: 0.5000
 Enclose: 'below'
 CapVisible: on

For more information about customizing the property display, see “Customize Property Display”.

Optimize the update Method
In most cases, the update method of your class reconfigures all the relevant aspects of your chart
that depend on the public properties. Sometimes, the reconfiguration involves an expensive
calculation that is time consuming. If the calculation involves only a subset of the properties, you can
design your class to execute that code only when it is necessary.

One way to optimize the update method is to add these components to your class:

• Define a private property called ExpensivePropChanged that accepts a logical value. This
property indicates whether any of the properties used in the expensive calculation have changed.

• Write a set method for each property involved in the expensive calculation. Within each set
method, set the ExpensivePropChanged property to true.

• Write a protected method that performs the expensive calculation.
• Write a conditional statement in the update method that checks the value of

ExpensivePropChanged. If the value is true, execute the method that performs the expensive
calculation.

The following code provides a simplified implementation of this design.

classdef OptimizedChart < matlab.graphics.chartcontainer.ChartContainer

 properties
 Prop1
 Prop2
 end
 properties(Access=private,Transient,NonCopyable)
 ExpensivePropChanged (1,1) logical = true
 end

 methods(Access = protected)
 function setup(obj)
 % Configure chart
 % ...
 end
 function update(obj)
 % Perform expensive computation if needed
 if obj.ExpensivePropChanged
 doExpensiveCalculation(obj);
 obj.ExpensivePropChanged = false;
 end

 Managing Properties of Chart Classes

23-19

 % Update other aspects of chart
 % ...
 end
 function doExpensiveCalculation(obj)
 % Expensive code
 % ...
 end
 end

 methods
 function set.Prop2(obj,val)
 obj.Prop2 = val;
 obj.ExpensivePropChanged = true;
 end
 end
end

In this case, Prop2 is involved in the expensive calculation. The set.Prop2 method sets the value of
Prop2, and then it sets ExpensivePropChanged to true. Thus, the next time the update method
runs, it calls doExpensiveCalculation only if ExpensivePropChanged is true. Then the
update method continues to update other aspects of the chart.

Example: Optimized Isosurface Chart with Customized Property
Display
Define an IsoSurfCapChart class for displaying an isosurface with the associated isocaps.
Include the following features:

• Properties that use size and class validation
• A customized property display
• An optimized update method that recalculates the isosurface and isocaps only if one or more

of the relevant properties changed

To define this class, create a program file named IsoSurfCapChart.m in a folder that is on the
MATLAB path. Then implement the class by following the steps in the table.

Step Implementation
Derive from the
ChartContainer base
class.

classdef IsoSurfCapChart < matlab.graphics.chartcontainer.ChartContainer

23 Developing Classes of Chart Objects

23-20

Step Implementation
Define the public
properties using class
and size validation.

• VolumeData,
IsoValue, and
Color are
parameters for the
isosurface.

• Enclose,
WhichCapPlane,
and CapVisible
are parameters for
the isocaps.

 properties
 VolumeData double = rand(25,25,25)
 IsoValue (1,1) double = 0.5
 Enclose {mustBeMember(Enclose,{'above','below'})} = 'below'
 WhichCapPlane {mustBeMember(WhichCapPlane,{'all','xmin',...
 'xmax','ymin','ymax','zmin','zmax'})} = 'all'
 CapVisible (1,1) matlab.lang.OnOffSwitchState = 'on'
 Color (1,3) double {mustBeGreaterThanOrEqual(Color,0),...
 mustBeLessThanOrEqual(Color,1)} = [.2 .5 .8]
 end

Define the private
properties.

• IsoPatch and
CapPatch store the
Patch objects for
the isosurface
and isocaps.

• SmoothData stores
a smoothed version
of the volume data.

• ExpensivePropCha
nged indicates
whether the update
method needs to
recalculate the
isosurface and
isocaps.

 properties(Access = private,Transient,NonCopyable)
 IsoPatch (1,1) matlab.graphics.primitive.Patch
 CapPatch (1,1) matlab.graphics.primitive.Patch
 SmoothData double = [];
 ExpensivePropChanged (1,1) logical = true
 end

Implement the setup
method. In this case,
call the patch function
twice to create the
Patch objects for the
isosurface and
isocaps. Store the
objects in the
corresponding
properties, and
configure the axes.

 methods(Access = protected)
 function setup(obj)
 ax = getAxes(obj);

 % Create two Patch objects
 obj.IsoPatch = patch(ax,NaN,NaN,NaN, 'EdgeColor', 'none', ...
 'FaceColor',[.2 .5 .8],'FaceAlpha',0.9);
 hold(ax,'on');
 obj.CapPatch = patch(ax,NaN,NaN,NaN,'EdgeColor', 'none', ...
 'FaceColor','interp');

 % Configure the axes
 view(ax,3)
 camlight(ax, 'infinite');
 camlight(ax,'left');
 lighting(ax, 'gouraud');
 hold(ax,'off');
 end

 Managing Properties of Chart Classes

23-21

Step Implementation
Implement the update
method. Decide
whether to call the
doExpensiveCalcula
tion method by testing
the value of
ExpensivePropChang
ed. Then continue
updating the other (less
expensive) aspects of
the chart.

 function update(obj)
 % Perform expensive computation if needed
 if obj.ExpensivePropChanged
 doExpensiveCalculation(obj);
 obj.ExpensivePropChanged = false;
 end

 % Update visibility of CapPatch and update color
 obj.CapPatch.Visible = obj.CapVisible;
 obj.IsoPatch.FaceColor = obj.Color;
 end

Implement the
doExpensiveCalcula
tion method, which
smooths the volume
data and recalculates
the faces and vertices of
the isosurface and
isocaps.

 function doExpensiveCalculation(obj)
 % Update isosurface
 obj.SmoothData = smooth3(obj.VolumeData,'box',7);
 [F,V] = isosurface(obj.SmoothData, obj.IsoValue);
 set(obj.IsoPatch,'Faces',F,'Vertices',V);
 isonormals(obj.SmoothData,obj.IsoPatch);

 % Update isocaps
 [m,n,p] = size(obj.SmoothData);
 [Xc,Yc,Zc] = meshgrid(1:n,1:m,1:p);
 [Fc,Vc,Cc] = isocaps(Xc,Yc,Zc,obj.SmoothData,obj.IsoValue,...
 obj.Enclose,obj.WhichCapPlane);
 set(obj.CapPatch,'Faces',Fc,'Vertices',Vc,'CData',Cc);
 end

Implement the
getPropertyGroups
method to customize
the property display.

 function propgrp = getPropertyGroups(obj)
 if ~isscalar(obj)
 % List for array of objects
 propgrp = getPropertyGroups@matlab.mixin.CustomDisplay(obj);

 else
 % List for scalar object
 propList = {'Color','IsoValue','Enclose','CapVisible',...
 'WhichCapPlane','VolumeData'};
 propgrp = matlab.mixin.util.PropertyGroup(propList);
 end
 end
 end

Implement the set
methods for each
expensive property
(VolumeData,
IsoValue, and
Enclose). Within each
method, set the
corresponding property
value, and then set
ExpensivePropChang
ed to true.

 methods
 function set.VolumeData(obj,val)
 obj.VolumeData = val;
 obj.ExpensivePropChanged = true;
 end
 function set.IsoValue(obj, val)
 obj.IsoValue = val;
 obj.ExpensivePropChanged = true;
 end
 function set.Enclose(obj, val)
 obj.Enclose = val;
 obj.ExpensivePropChanged = true;
 end
 end
end

23 Developing Classes of Chart Objects

23-22

Next, create an array of volume data, and then create an instance of IsoSurfCapChart.

[X,Y,Z] = meshgrid(-2:0.1:2);
v = (1/9)*X.^2 + (1/16)*Y.^2 + Z.^2;
c = IsoSurfCapChart('VolumeData',v,'IsoValue',0.5)

c =

 IsoSurfCapChart with properties:

 Color: [0.2000 0.5000 0.8000]
 IsoValue: 0.5000
 Enclose: 'below'
 CapVisible: on
 WhichCapPlane: 'all'
 VolumeData: [41×41×41 double]

Change the color of c and hide the isocaps.

c.Color = [1 0.60 0];
c.CapVisible = false;

 Managing Properties of Chart Classes

23-23

See Also
Classes
matlab.graphics.chartcontainer.ChartContainer

Functions
isosurface | isocaps

More About
• “Validate Property Values”
• “Customize Property Display”
• “Property Set Methods”
• “Chart Development Overview” on page 23-2

23 Developing Classes of Chart Objects

23-24

Enabling Convenience Functions for Setting Axes Properties
When you develop a chart as a subclass of the ChartContainer class, consider enabling some of the
MATLAB convenience functions for setting properties on the axes. For example, you can design your
class to support the title function. By enabling convenience functions, you provide a user
experience that is consistent with the MATLAB plotting functions.

Support for Different Types of Properties
The way you enable a convenience function depends on whether the function controls a noncomputed
property or a computed property. This table lists the convenience functions you can support.

Convenience Function Associated Axes Property Type of
Property

title, subtitle Title, Subtitle Noncomputed
xlabel, ylabel, zlabel XLabel, YLabel, and ZLabel,

respectively
Noncomputed

xlim, ylim, zlim XLim, YLim, and ZLim, respectively Computed
xticks, yticks, zticks XTick, YTick, and ZTick, respectively Computed
xticklabels, yticklabels,
zticklabels

XTickLabel, YTickLabel, and
ZTickLabel, respectively

Computed

view View Computed

Enable Functions for Noncomputed Properties
Noncomputed properties are fixed values. They do not change until a user or your code changes them
explicitly.

To enable a convenience function for a noncomputed property, define a public property in your class
that stores the value of axes property you want to control. Then define a public method that has the
same name and supports the same calling syntaxes as the convenience function you want to support.
Add a line of code to the method that sets the value of the property. For example, consider a class that
has a public property called TitleText for storing the title. The following code shows the title
method for the class.

function title(obj,txt)
 obj.TitleText = txt;
end

Next, add a line of code to the update method that calls the MATLAB convenience function to set the
corresponding axes property.

title(getAxes(obj),obj.TitleText);

After you perform the preceding steps and save your class file, you can create an instance of your
chart and call the title function to display a title. Doing so triggers this calling sequence:

1 The title method on the class sets the TitleText property, which marks the chart for
updating.

 Enabling Convenience Functions for Setting Axes Properties

23-25

2 The next time drawnow executes, the update method executes and calls the title function on
the axes.

3 The title function updates the Title property on the axes.

Enable Functions for Computed Properties
Computed properties are controlled by the axes. The axes recomputes their values depending on the
content of the axes and the underlying data.

To enable a convenience function for a computed property, define a method that has the same name
and calling syntax as the convenience function you want to enable. Inside that method, call the
convenience function and specify the axes as the first argument. For example, to enable the xlim
function, define a method called xlim in your class. Since the xlim function accepts a variable
number of input arguments, you must specify varargin as the second input argument. The xlim
function also supports a variable number of output arguments, so you must specify
[varargout{1:nargout}] to support those arguments.

function varargout = xlim(obj,varargin)
 ax = getAxes(obj);
 [varargout{1:nargout}] = xlim(ax,varargin{:});
end

To provide access to the corresponding property values on your chart, define two dependent
properties on your class. The first property provides access to the value that the convenience function
controls. The other property provides access to the mode property, which indicates how the first
property is controlled. The mode property can have a value of 'auto' or 'manual'. Define these
properties as dependent so that the chart does not store the values. The axes controls and stores
these values. For example, to provide access to the XLim and XLimMode properties on the axes,
define a pair of dependent properties called XLimits and XLimitsMode.

properties (Dependent)
 XLimits (1,2) double
 XLimitsMode {mustBeMember(XLimitsMode,{'auto','manual'})}
end

Next, define the set and get methods for each dependent property. Within each method, set the
corresponding axes property. The following code shows the set methods and get methods for the
XLimits and XLimitsMode properties.

function set.XLimits(obj,xlm)
 ax = getAxes(obj);
 ax.XLim = xlm;
end
function xlm = get.XLimits(obj)
 ax = getAxes(obj);
 xlm = ax.XLim;
end
function set.XLimitsMode(obj,xlmmode)
 ax = getAxes(obj);
 ax.XLimMode = xlmmode;
end
function xlm = get.XLimitsMode(obj)
 ax = getAxes(obj);
 xlm = ax.XLimMode;
end

23 Developing Classes of Chart Objects

23-26

After you perform the preceding steps and save your class file, you can create an instance of your
chart and call the xlim function to change the x-axis limits in the chart. The xlim method executes,
which in turn calls the xlim function to update the XLim property on the axes.

Note By default, MATLAB does not store any changes when the user calls the xlim and ylim
functions. To provide support for preserving these changes when the user saves and loads your chart,
see “Saving and Loading Instances of Chart Classes” on page 23-31.

Chart Class That Supports title, xlim, and ylim Functions

This example shows how to define a class of charts that supports the title, xlim, and ylim
functions. The following code demonstrates how to:

• Define a TitleText property and implement a title method so that instances of the chart
support the title function.

• Implement the xlim and ylim methods so that instances of the chart support the xlim and ylim
functions.

• Define properties that allow the user to get and set the x- and y-axis limits.
• Combine Bar and ErrorBar objects into a single chart.

To define the class, copy this code into the editor and save it with the name BarErrorBarChart.m in
a writable folder.

classdef BarErrorBarChart < matlab.graphics.chartcontainer.ChartContainer
 properties
 XData (1,:) double = NaN
 YData (1,:) double = NaN
 EData (1,:) double = NaN
 TitleText (:,:) char = ''
 end
 properties (Dependent)
 % Provide properties to support setting & getting
 XLimits (1,2) double
 XLimitsMode {mustBeMember(XLimitsMode,{'auto','manual'})}
 YLimits (1,2) double
 YLimitsMode {mustBeMember(YLimitsMode,{'auto','manual'})}
 end
 properties (Access = private)
 BarObject (1,1) matlab.graphics.chart.primitive.Bar
 ErrorBarObject (1,1) matlab.graphics.chart.primitive.ErrorBar
 end

 methods(Access = protected)
 function setup(obj)
 ax = getAxes(obj);
 obj.BarObject = bar(ax,NaN,NaN);
 hold(ax,'on')
 obj.ErrorBarObject = errorbar(ax,NaN,NaN,NaN);
 obj.ErrorBarObject.LineStyle = 'none';
 obj.ErrorBarObject.LineWidth = 2;
 obj.ErrorBarObject.Color = [0.6 0.7 1];

 Enabling Convenience Functions for Setting Axes Properties

23-27

 hold(ax,'off');
 end
 function update(obj)
 % Update Bar and ErrorBar XData and YData
 obj.BarObject.XData = obj.XData;
 obj.BarObject.YData = obj.YData;
 obj.ErrorBarObject.XData = obj.XData;
 obj.ErrorBarObject.YData = obj.YData;

 % Update ErrorBar delta values
 obj.ErrorBarObject.YNegativeDelta = obj.EData;
 obj.ErrorBarObject.YPositiveDelta = obj.EData;

 % Update axes title
 ax = getAxes(obj);
 title(ax,obj.TitleText);
 end
 end

 methods
 % xlim method
 function varargout = xlim(obj,varargin)
 ax = getAxes(obj);
 [varargout{1:nargout}] = xlim(ax,varargin{:});
 end
 % ylim method
 function varargout = ylim(obj,varargin)
 ax = getAxes(obj);
 [varargout{1:nargout}] = ylim(ax,varargin{:});
 end
 % title method
 function title(obj,txt)
 obj.TitleText = txt;
 end

 % set and get methods for XLimits and XLimitsMode
 function set.XLimits(obj,xlm)
 ax = getAxes(obj);
 ax.XLim = xlm;
 end
 function xlm = get.XLimits(obj)
 ax = getAxes(obj);
 xlm = ax.XLim;
 end
 function set.XLimitsMode(obj,xlmmode)
 ax = getAxes(obj);
 ax.XLimMode = xlmmode;
 end
 function xlm = get.XLimitsMode(obj)
 ax = getAxes(obj);
 xlm = ax.XLimMode;
 end

 % set and get methods for YLimits and YLimitsMode
 function set.YLimits(obj,ylm)
 ax = getAxes(obj);
 ax.YLim = ylm;
 end

23 Developing Classes of Chart Objects

23-28

 function ylm = get.YLimits(obj)
 ax = getAxes(obj);
 ylm = ax.YLim;
 end
 function set.YLimitsMode(obj,ylmmode)
 ax = getAxes(obj);
 ax.YLimMode = ylmmode;
 end
 function ylm = get.YLimitsMode(obj)
 ax = getAxes(obj);
 ylm = ax.YLimMode;
 end
 end
end

After saving BarErrorBarChart.m, create an instance of the chart.

BarErrorBarChart('XData',[1 2 3 4],'YData',[11 22 31 41],'EData',[2 2 2 2]);

Specify a title by calling the title function. Then zoom into the last three bars by calling the xlim
function.

title('Top Three Contributors')
xlim([1.5 5])

 Enabling Convenience Functions for Setting Axes Properties

23-29

See Also
Classes
matlab.graphics.chartcontainer.ChartContainer

Functions
bar | errorbar | title | xlim | ylim

Properties
Axes | Bar | ErrorBar

More About
• “Chart Development Overview” on page 23-2
• “Property Get Methods”
• “Property Set Methods”

23 Developing Classes of Chart Objects

23-30

Saving and Loading Instances of Chart Classes
Charts that inherit from the ChartContainer base class follow the same rules for saving and
loading as other MATLAB objects. However in some cases, you might want your objects to save and
load additional information. For example, to provide support for saving and loading the result of
interactive changes, such as rotating or zooming, you must store the modified view of the axes in a
property on your class. By defining properties and methods for storing and retrieving these kinds of
changes, you enable users to save and reload instances of your chart with their changes preserved.

Coding Pattern for Saving and Loading Axes Changes
The built-in axes interactions change certain properties on the axes. For example, dragging to rotate
a 3-D chart changes the View property. Similarly, scrolling to zoom within a chart changes the XLim,
YLim, (and possibly ZLim) properties on the axes. To preserve the changes when the user saves and
reloads the chart, add these components to your class:

• Define a protected property for storing the chart state on page 23-31 — This property provides a
place to store the axes changes when MATLAB saves the chart object. For example, you might
name this property ChartState.

• Define a get method for retrieving the chart state on page 23-31 — This method does either of
two things depending on whether MATLAB is saving or loading the chart object. When MATLAB
saves the chart object, the method returns the relevant axes changes so they can be saved. When
MATLAB loads the chart object, the method returns the axes changes that are stored in the
ChartState property.

• Define a protected method that updates the axes on page 23-32 — When the chart object loads
into MATLAB, this method calls the get method for the ChartState property and then updates
the relevant axes properties for the chart.

Define a Protected Property for Storing the Chart State
Define a protected property to store the relevant axes information. This property is empty except
when MATLAB sets its value during the save process, or when MATLAB loads a saved instance of the
chart. Define the property with a name that is useful and easy to recognize. For example, define a
property called ChartState.

properties (Access = protected)
 ChartState = []
end

Define a get Method for Retrieving the Chart State
Define a public get method for the ChartState property. Like all set and get methods, this method
automatically inherits the access permissions of the ChartState property. MATLAB calls this method
when it saves an instance of the chart.

Within this method, create a variable called isLoadedStateAvailable that stores a logical
value. This value is true when the ChartState property is not empty.

Next, write a conditional statement that checks the value of isLoadedStateAvailable. Divide the
statement into clauses:

 Saving and Loading Instances of Chart Classes

23-31

• if...then clause — The isLoadedStateAvailable value is true. Return the contents of the
ChartState property.

• else clause — The isLoadedStateAvailable value is false. Create a structure and get the
axes object. Add the XLim, YLim, and ZLim fields to the structure only if the XLim, YLim, and
ZLim properties on the axes changed. To test whether the axes properties changed, check to see if
the corresponding mode properties are set to 'manual'. Since there is no mode property
associated with the axes View property, add the View field to the structure without checking
anything.

methods
 function data = get.ChartState(obj)
 isLoadedStateAvailable = ~isempty(obj.ChartState);

 if isLoadedStateAvailable
 data = obj.ChartState;
 else
 data = struct;
 ax = getAxes(obj);

 % Get axis limits only if mode is manual.
 if strcmp(ax.XLimMode,'manual')
 data.XLim = ax.XLim;
 end
 if strcmp(ax.YLimMode,'manual')
 data.YLim = ax.YLim;
 end
 if strcmp(ax.ZLimMode,'manual')
 data.ZLim = ax.ZLim;
 end

 % No ViewMode to check. Store the view anyway.
 data.View = ax.View;
 end
 end
end

Define a Protected Method That Updates the Axes
Define a protected method called loadstate. In this method, perform these steps:

• Query the ChartState property and store the returned value as data.
• Check for the existence of the XLim, YLim, ZLim, and View fields before updating the

corresponding properties on the axes.
• Clear the contents of the ChartState property.

After you create this method, call it near the end of the setup method (after creating the graphics
objects that make up your chart). The setup method executes when MATLAB creates a new instance
of the chart or when it loads an instance of a chart.

function loadstate(obj)
 data=obj.ChartState;
 ax = getAxes(obj);

 % Look for states that changed
 if isfield(data, 'XLim')

23 Developing Classes of Chart Objects

23-32

 ax.XLim=data.XLim;
 end
 if isfield(data, 'YLim')
 ax.YLim=data.YLim;
 end
 if isfield(data, 'ZLim')
 ax.ZLim=data.ZLim;
 end
 if isfield(data, 'View')
 ax.View=data.View;
 end

 % Reset ChartState to empty
 obj.ChartState=[];
end

Example: 3-D Plot That Stores Axis Limits and View
Define a MeshGradientChart class for displaying a mesh plot with x and y gradient vectors at the
grid points. Design this class so that the XLim, YLim, ZLim, and View properties of the axes are
preserved when the user saves and reloads an instance of the chart.

To define this class, create a program file named MeshGradientChart.m in a folder that is on the
MATLAB path. Then implement the class by following the steps in the table.

Step Implementation
Derive from the
ChartContainer base
class.

classdef MeshGradientChart < matlab.graphics.chartcontainer.ChartContainer

Define the public
properties.

 properties
 XData (:,:) double = []
 YData (:,:) double = []
 ZData (:,:) double = []
 end

Define the private
properties. One
property stores a
Surface object, and
the other stores a
Quiver object.

 properties (Access = private,Transient,NonCopyable)
 SurfaceObject (1,1) matlab.graphics.chart.primitive.Surface
 QuiverObject (1,1) matlab.graphics.chart.primitive.Quiver
 end

Define a protected
ChartState property
for storing the axes
state.

 properties (Access = protected)
 ChartState = []
 end

 Saving and Loading Instances of Chart Classes

23-33

Step Implementation
Implement the setup
method. In this case,
call the mesh and
quiver3 functions to
create the Surface and
Quiver objects
respectively. Store the
objects in the
corresponding
properties, and turn the
hold state of the axes to
'off'. Then call the
loadstate method to
update the state of the
axes.

 methods(Access = protected)
 function setup(obj)
 ax = getAxes(obj);

 % Create Mesh and Quiver objects.
 obj.SurfaceObject=mesh(ax,[],[],[],'FaceColor','none');
 hold(ax,'on')
 obj.QuiverObject=quiver3(ax,[],[],[],[],'Color','r','LineWidth',2);
 hold(ax,'off')

 % Load state of the axes.
 loadstate(obj);
 end

Implement the update
method. In this case,
update the x- and y-
coordinates of the mesh
plot and the tails of the
gradient vectors. Then
update the lengths and
directions of the
vectors.

 function update(obj)
 % Update Mesh data.
 obj.SurfaceObject.XData = obj.XData;
 obj.SurfaceObject.YData = obj.YData;
 obj.SurfaceObject.ZData = obj.ZData;

 % Update locations of vector tails.
 obj.QuiverObject.XData = obj.XData;
 obj.QuiverObject.YData = obj.YData;
 obj.QuiverObject.ZData = obj.ZData;

 % Update lengths and directions of vectors.
 [gradx,grady] = gradient(obj.ZData);
 obj.QuiverObject.UData = gradx;
 obj.QuiverObject.VData = grady;
 obj.QuiverObject.WData = zeros(size(obj.ZData));
 end

23 Developing Classes of Chart Objects

23-34

Step Implementation
Implement the
loadstate method,
which updates the axes
and resets the
ChartState property
to an empty array.

 function loadstate(obj)
 data=obj.ChartState;
 ax = getAxes(obj);

 % Look for states that changed.
 if isfield(data, 'XLim')
 ax.XLim=data.XLim;
 end
 if isfield(data, 'YLim')
 ax.YLim=data.YLim;
 end
 if isfield(data, 'ZLim')
 ax.ZLim=data.ZLim;
 end
 if isfield(data, 'View')
 ax.View=data.View;
 end

 % Reset ChartState to empty.
 obj.ChartState=[];
 end
 end

Implement the
ChartState get
method, which returns
the axes state
information.

 methods
 function data = get.ChartState(obj)
 isLoadedStateAvailable = ~isempty(obj.ChartState);

 % Return ChartState content if loaded state is available.
 % Otherwise, return current axes state.
 if isLoadedStateAvailable
 data = obj.ChartState;
 else
 data = struct;
 ax = getAxes(obj);

 % Get axis limits only if mode is manual.
 if strcmp(ax.XLimMode,'manual')
 data.XLim = ax.XLim;
 end
 if strcmp(ax.YLimMode,'manual')
 data.YLim = ax.YLim;
 end
 if strcmp(ax.ZLimMode,'manual')
 data.ZLim = ax.ZLim;
 end

 % No ViewMode to check. Store the view anyway.
 data.View = ax.View;
 end
 end
 end
end

Next, create an instance of the chart. Then rotate or zoom into the chart and save it. The object
preserves the interactive changes when you load the chart back into MATLAB.

 Saving and Loading Instances of Chart Classes

23-35

Create an instance of the chart

[X,Y] = meshgrid(-5:5);
Z = X.^2 + Y.^2;
c = MeshGradientChart('XData',X,'YData',Y,'ZData',Z);

When you create the chart:

• The setup method calls the loadstate method.
• The loadstate method performs these tasks, which ultimately have no effect on the chart object

or the underlying axes object.

• Call the get.ChartState method, which returns a structure containing the current value of
the axes View property.

• Reset the View property on the axes to the value stored in the structure.
• Clear the contents of the ChartState property.

Rotate or zoom into the chart and save it

savefig(gcf,'mychart.fig')

When you save the chart, MATLAB calls the get.ChartState method, which returns a structure
containing:

• The values of the XLim, YLim, or ZLim properties on the axes, but only if they changed
• The value of the View property on the axes

After MATLAB retrieves the structure, it stores the structure in the ChartState property of the
chart object that is being saved.

Load the chart that you saved

openfig('mychart.fig')

23 Developing Classes of Chart Objects

23-36

When you load the chart:

• The setup method calls the loadstate method.
• The loadstate method performs these tasks:

• Call the get.ChartState method, which returns the structure from the ChartState
property.

• Reset the XLim, YLim, ZLim, and View properties on the axes, but only if the structure
contains the corresponding fields.

• Clear the contents of the ChartState property.

See Also
Classes
matlab.graphics.chartcontainer.ChartContainer

Functions
mesh | quiver3

Properties
Axes | Chart Surface | Quiver

More About
• “Save and Load Process for Objects”
• “Chart Development Overview” on page 23-2
• “Property Get Methods”

 Saving and Loading Instances of Chart Classes

23-37

Chart Class with Custom Property Display

This example shows how to define a class of charts with a custom property display that lists only a
subset of the properties. The following code demonstrates how to overload the getPropertyGroups
method of the matlab.mixin.CustomDisplay class. The example also demonstrates the basic
coding pattern for charts that derive from the
matlab.graphics.chartcontainer.ChartContainer base class. You can use this example to
become familiar with the coding techniques of chart development, or as the basis for a class you plan
to develop.

To define the class, copy the following code into the editor and save it with the name
SmoothPlotCustomDisplay.m in a writable folder.

classdef SmoothPlotCustomDisplay < matlab.graphics.chartcontainer.ChartContainer
 % c = SmoothPlotCustomDisplay('XData',X,'YData',Y,Name,Value,...)
 % plots a dotted line of the coordinates in X and Y with a smoothed
 % version of the line. You can also specify additonal name-value
 % arguments, such as 'SmoothColor' and 'SmoothWidth'.
 properties
 XData (1,:) double = NaN
 YData (1,:) double = NaN
 SmoothColor {validatecolor} = [0.9290 0.6940 0.1250]
 SmoothWidth (1,1) double = 2
 end
 properties(Access = private,Transient,NonCopyable)
 OriginalLine (1,1) matlab.graphics.chart.primitive.Line
 SmoothLine (1,1) matlab.graphics.chart.primitive.Line
 end

 methods(Access = protected)
 function setup(obj)
 % Get the axes
 ax = getAxes(obj);

 % Create the original and smooth lines
 obj.OriginalLine = plot(ax,NaN,NaN,'LineStyle',':');
 hold(ax,'on')
 obj.SmoothLine = plot(ax,NaN,NaN,'LineStyle','-',...
 'Color',[0.9290 0.6940 0.1250],'LineWidth',2);
 hold(ax,'off')
 end
 function update(obj)
 % Update line data
 obj.OriginalLine.XData = obj.XData;
 obj.OriginalLine.YData = obj.YData;
 obj.SmoothLine.XData = obj.XData;
 obj.SmoothLine.YData = createSmoothData(obj);

 % Update line color and width
 obj.SmoothLine.Color = obj.SmoothColor;
 obj.SmoothLine.LineWidth = obj.SmoothWidth;
 end
 function propgrp = getPropertyGroups(obj)
 if ~isscalar(obj)

23 Developing Classes of Chart Objects

23-38

 % List for array of objects
 propgrp = getPropertyGroups@matlab.mixin.CustomDisplay(obj);

 else
 % List for scalar object
 propList = {'SmoothColor','XData','YData'};
 propgrp = matlab.mixin.util.PropertyGroup(propList);
 end
 end
 function sm = createSmoothData(obj)
 % Calculate smoothed data
 v = ones(1,10)*0.1;
 sm = conv(obj.YData,v,'same');
 end
 end
end

After saving the class file, you can create an instance of the chart. Omit the semicolon when you
create the chart to see the customized display.

x = 1:1:100;
y = 10*sin(x/15)+8*sin(10*x+0.5);
c = SmoothPlotCustomDisplay('XData',x,'YData',y)

c =

 SmoothPlotCustomDisplay with properties:

 SmoothColor: [0.9290 0.6940 0.1250]
 XData: [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 ...]
 YData: [-6.3714 9.3040 -4.3583 5.3084 5.1309 -1.8987 12.3614 ...]

 Use GET to show all properties

 Chart Class with Custom Property Display

23-39

See Also
Classes
matlab.graphics.chartcontainer.ChartContainer

More About
• “Customize Property Display”
• “Managing Properties of Chart Classes” on page 23-17

23 Developing Classes of Chart Objects

23-40

Chart Class with Variable Number of Lines

This example shows how to define a class of charts that can display any number of lines based on the
size of the user's data. The chart displays as many lines as there are columns in the YData matrix.
For each line, the chart calculates the local extrema and indicates their locations with circular
markers. The following code demonstrates how to:

• Define two properties called PlotLineArray and ExtremaArray that store the objects for the
lines and the markers, respectively.

• Implement an update method that replaces the contents of the PlotLineArray and
ExtremaArray properties with the new objects. Because this method executes all the plotting
and configuration commands, the setup method is empty. This is a simple way to create any
number of lines. To learn how to create this chart more efficiently, by reusing existing line objects,
see “Optimized Chart Class for Displaying Variable Number of Lines” on page 23-44.

To define the class, copy this code into the editor and save it with the name LocalExtremaChart.m
in a writable folder.

classdef LocalExtremaChart < matlab.graphics.chartcontainer.ChartContainer
 % c = LocalExtremaChart('XData',X,'YData',Y,Name,Value,...)
 % plots one line with markers at local extrema for every column of matrix Y.
 % You can also specify the additonal name-value arguments, 'MarkerColor'
 % and 'MarkerSize'.

 properties
 XData (1,:) double = NaN
 YData (:,:) double = NaN
 MarkerColor {validatecolor} = [1 0 0]
 MarkerSize (1,1) double = 5
 end
 properties(Access = private,Transient,NonCopyable)
 PlotLineArray (:,1) matlab.graphics.chart.primitive.Line
 ExtremaArray (:,1) matlab.graphics.chart.primitive.Line
 end

 methods(Access = protected)
 function setup(~)
 end
 function update(obj)
 % get the axes
 ax = getAxes(obj);

 % Plot Lines and the local extrema
 obj.PlotLineArray = plot(ax,obj.XData,obj.YData);
 hold(ax,'on')

 % Replicate x-coordinate vectors to match size of YData
 newx = repmat(obj.XData(:),1,size(obj.YData,2));

 % Find local minima and maxima and plot markers
 tfmin = islocalmin(obj.YData,1);
 tfmax = islocalmax(obj.YData,1);
 obj.ExtremaArray = plot(ax,newx(tfmin),obj.YData(tfmin),'o',...
 newx(tfmax),obj.YData(tfmax),'o',...

 Chart Class with Variable Number of Lines

23-41

 'MarkerEdgeColor','none',...
 'MarkerFaceColor',obj.MarkerColor,...
 'MarkerSize',obj.MarkerSize);
 hold(ax,'off')
 end
 end
end

After saving the class file, you can create an instance of the chart. For example:

x = linspace(0,3);
y1 = cos(5*x)./(1+x.^2);
y2 = -cos(5*x)./(1+x.^3);
y3 = sin(x)./2;
y = [y1' y2' y3'];
c = LocalExtremaChart('XData',x,'YData',y);

Change the marker size to 8.

c.MarkerSize = 8;

23 Developing Classes of Chart Objects

23-42

See Also
Classes
matlab.graphics.chartcontainer.ChartContainer

More About
• “Chart Development Overview” on page 23-2
• “Optimized Chart Class for Displaying Variable Number of Lines” on page 23-44

 Chart Class with Variable Number of Lines

23-43

Optimized Chart Class for Displaying Variable Number of Lines

This example shows how to optimize a chart class for displaying a variable number of lines. It reuses
existing line objects, which can improve the performance of the chart, especially if the number of
lines does not change frequently. For a simpler version of this chart without the optimization, see
“Chart Class with Variable Number of Lines” on page 23-41.

The chart displays as many lines as there are columns in the YData matrix, with circular markers at
the local extrema. The following code demonstrates how to:

• Define two properties called PlotLineArray and ExtremaLine that store the objects for the
lines and the markers, respectively.

• Implement a setup method that initializes the ExtremaLine object.
• Implement an update method that gets the size of the PlotLineArray, and then adds or

subtracts objects from that array according to the number of columns in YData.

To define the class, copy this code into the editor and save it with the name
OptimLocalExtremaChart.m in a writable folder.

classdef OptimLocalExtremaChart < matlab.graphics.chartcontainer.ChartContainer
 % c = OptimLocalExtremaChart('XData',X,'YData',Y,Name,Value,...)
 % plots one line with markers at local extrema for every column of matrix Y.
 % You can also specify the additonal name-value arguments, 'MarkerColor'
 % and 'MarkerSize'.

 properties
 XData (:,1) double = NaN
 YData (:,:) double = NaN
 MarkerColor {validatecolor} = [1 0 0]
 MarkerSize (1,1) double = 5
 end
 properties(Access = private,Transient,NonCopyable)
 PlotLineArray (:,1) matlab.graphics.chart.primitive.Line
 ExtremaLine (:,1) matlab.graphics.chart.primitive.Line
 end

 methods(Access = protected)
 function setup(obj)
 obj.ExtremaLine = matlab.graphics.chart.primitive.Line(...
 'Parent', obj.getAxes(), 'Marker', 'o', ...
 'MarkerEdgeColor', 'none', 'LineStyle',' none');
 end
 function update(obj)
 % Get the axes
 ax = getAxes(obj);

 % Create extra lines as needed
 p = obj.PlotLineArray;
 nPlotLinesNeeded = size(obj.YData, 2);
 nPlotLinesHave = numel(p);
 for n = nPlotLinesHave+1:nPlotLinesNeeded
 p(n) = matlab.graphics.chart.primitive.Line('Parent', ax, ...
 'SeriesIndex', n, 'LineWidth', 2);

23 Developing Classes of Chart Objects

23-44

 end

 % Update the lines
 for n = 1:nPlotLinesNeeded
 p(n).XData = obj.XData;
 p(n).YData = obj.YData(:,n);
 end

 % Delete unneeded lines
 delete(p((nPlotLinesNeeded+1):numel(p)))
 obj.PlotLineArray = p(1:nPlotLinesNeeded);

 % Replicate x-coordinate vectors to match size of YData
 newx = repmat(obj.XData(:),1,size(obj.YData,2));

 % Find local minima and maxima and plot markers
 tfmin = islocalmin(obj.YData,1);
 tfmax = islocalmax(obj.YData,1);
 obj.ExtremaLine.XData = [newx(tfmin); newx(tfmax)];
 obj.ExtremaLine.YData = [obj.YData(tfmin); obj.YData(tfmax)];
 obj.ExtremaLine.MarkerFaceColor = obj.MarkerColor;
 obj.ExtremaLine.MarkerSize = obj.MarkerSize;

 % Make sure the extrema are on top
 uistack(obj.ExtremaLine, 'top');
 end
 end
end

After saving the class file, you can create an instance of the chart. For example:

x = linspace(0,2)';
y = cos(5*x)./(1+x.^2);
c = OptimLocalExtremaChart('XData',x,'YData',y);

 Optimized Chart Class for Displaying Variable Number of Lines

23-45

Now, create a for loop that adds an additional line to the plot at every iteration. The chart object
keeps all the existing lines, and adds one additonal line for each i.

for i=1:10
 y = cos(5*x+i)./(1+x.^2);
 c.YData = [c.YData y];
end

23 Developing Classes of Chart Objects

23-46

See Also
Classes
matlab.graphics.chartcontainer.ChartContainer

Related Examples
• “Chart Class with Variable Number of Lines” on page 23-41
• “Managing Properties of Chart Classes” on page 23-17

 Optimized Chart Class for Displaying Variable Number of Lines

23-47

Chart Class for Displaying Variable Size Tiling of Plots

This example shows how to define a class for creating a tiling of plots that can be any size, depending
on the size of the user's data. The chart has a public Data property that accepts an m-by-n matrix.
The chart displays an n-by-n square tiling of scatter plots and histograms. The scatter plots show the
different columns of the data plotted against each other. The histograms show the distribution of the
values within each column of the data.

The update method in this class recreates the histograms and scatter plots to reflect changes in the
data. If the grid size of the layout conflicts with the size of the data, then all the axes are deleted and
the GridSize property is updated to match the size of the data. Then a new set of axes objects is
created.

To define the class, copy the following code into the editor and save it with the name
TrellisChart.m in a writable folder.

classdef TrellisChart < matlab.graphics.chartcontainer.ChartContainer

 properties
 Data(:,:) {mustBeNumeric}
 ColNames(1,:) string
 TitleText(1,:) string
 end

 methods (Access = protected)
 function setup(obj)
 % Use one toolbar for all of the axes
 axtoolbar(getLayout(obj),'default');
 end

 function update(obj)
 % Get the layout and store it as tcl
 tcl = getLayout(obj);
 numvars = size(obj.Data,2);

 % Reconfigure layout if needed
 if numvars ~= tcl.GridSize(1)
 % Delete layout contents to change the grid size
 delete(tcl.Children);
 if numvars>0
 tcl.GridSize = [numvars numvars];
 for i = 1:numvars^2
 nexttile(tcl,i);
 end
 end
 end

 % Populate the layout with the axes
 ax = gobjects(numvars,numvars);
 for col = 1:numvars
 for row = 1:numvars
 % Get the axes at the current row/column
 t = col + (row-1) * numvars;
 ax(row,col)=nexttile(tcl,t);

23 Developing Classes of Chart Objects

23-48

 if col==row
 % On the diagonal, draw histograms
 histogram(ax(row,col),obj.Data(:,col));
 ylabel(ax(row,col),'Count')
 else
 % Off the diagonal, draw scatters
 scatter(ax(row,col),obj.Data(:,col),...
 obj.Data(:,row),'filled','MarkerFaceAlpha',0.6)
 if length(obj.ColNames) >= row
 ylabel(ax(row,col),obj.ColNames(row));
 end
 end

 if length(obj.ColNames) >= col
 xlabel(ax(row,col),obj.ColNames(col));
 end
 end

 % Link the x-axis for each column, so that panning or zooming
 % affects all axes in the column.
 linkaxes(ax(:,col),'x')
 end

 % Chart title
 title(tcl,obj.TitleText,'FontSize',16);
 end
 end
end

After saving the class file, create an instance of the chart.

load patients
chartTitle = "Height, Weight, and Diastolic Blood Pressure";
c = TrellisChart('Data',[Height Weight Diastolic], ...
 'colNames', ["Height" "Weight" "Diastolic"],...
 'TitleText',chartTitle);

 Chart Class for Displaying Variable Size Tiling of Plots

23-49

See Also
Functions
getLayout

Classes
matlab.graphics.chartcontainer.ChartContainer

Properties
TiledChartLayout Properties

More About
• “Develop Charts With Polar Axes, Geographic Axes, or Multiple Axes” on page 23-13

23 Developing Classes of Chart Objects

23-50

Chart Class Containing Two Interactive Plots

This example shows how to define a class for visualizing timetable data using two axes with
interactive features. The top axes has panning and zooming enabled along the x dimension, so the
user can examine a region of interest. The bottom axes displays a plot over the entire time range. The
bottom axes also displays a light blue time window, which indicates the time range in the top axes.
The class defines the following properties, methods, and local functions.

Properties:

• Data - A public and dependent property that stores a timetable.
• TimeLimits - A public property that sets the limits of the top axes and the width of the time

window in the bottom axes.
• SavedData - A protected property that enables the user to save and load instances of the chart

and preserve the data.
• TopAxes and BottomAxes - Private properties that store the axes objects.
• TopLine and BottomLine - Private properties that store the line objects.
• TimeWindow - A patch object displayed in the bottom axes, which indicates the time range of the

top axes.

Methods:

• set.Data and get.Data - Enable the user to save and load instances of the chart and preserve
the data.

• setup - Executes once when the chart is created. It configures the layout and the axes, the line
objects, and the patch object.

• update - Executes after the setup method and after the user changes one or more properties on
the chart.

• panZoom - Updates the time limits of the chart when the user pans or zooms within the top axes.
This causes the time window to update to reflect the new limits.

• click - Recalculates the time limits when the user clicks the bottom axes.

Local Functions:

• updateDataTipTemplate - Called from within in the update method. It creates rows in the data
tips that correspond to the variables in the timetable.

• mustHaveOneNumericVariable - Validates the Data property. This function ensures that the
timetable specified by the user has at least one numeric variable.

To define the class, copy the following code into the editor and save it with the name
TimeTableChart.m in a writable folder.

classdef TimeTableChart < matlab.graphics.chartcontainer.ChartContainer
 properties (Dependent)
 Data timetable {mustHaveOneNumericVariable} = ...
 timetable(datetime.empty(0,1),zeros(0,1))
 end

 properties

 Chart Class Containing Two Interactive Plots

23-51

 TimeLimits (1,2) datetime = [NaT NaT]
 end

 properties (Access = protected)
 SavedData timetable = timetable(datetime.empty(0,1),zeros(0,1))
 end

 properties (Access = private, Transient, NonCopyable)
 TopAxes matlab.graphics.axis.Axes
 TopLine matlab.graphics.chart.primitive.Line
 BottomAxes matlab.graphics.axis.Axes
 BottomLine matlab.graphics.chart.primitive.Line
 TimeWindow matlab.graphics.primitive.Patch
 end

 methods
 function set.Data(obj, tbl)
 % Reset the time limits if the row times have changed.
 oldTimes = obj.SavedData.Properties.RowTimes;
 newTimes = tbl.Properties.RowTimes;
 if ~isequal(oldTimes, newTimes)
 obj.TimeLimits = [NaT NaT];
 end

 % Store the new table.
 obj.SavedData = tbl;
 end

 function tbl = get.Data(obj)
 tbl = obj.SavedData;
 end
 end

 methods (Access = protected)
 function setup(obj)
 % Create two axes. The top axes is 3x taller than bottom axes.
 tcl = getLayout(obj);
 tcl.GridSize = [4 1];
 obj.TopAxes = nexttile(tcl, 1, [3 1]);
 obj.BottomAxes = nexttile(tcl, 4);

 % Add a shared toolbar on the layout, which removes the
 % toolbar from the individual axes.
 axtoolbar(tcl, 'default');

 % Create one line to show the zoomed-in data.
 obj.TopLine = plot(obj.TopAxes, NaT, NaN);

 % Create one line to show an overview of the data, and disable
 % HitTest so the ButtonDownFcn on the bottom axes works.
 obj.BottomLine = plot(obj.BottomAxes, NaT, NaN, ...
 'HitTest', 'off');

 % Create a patch to show the current time limits.
 obj.TimeWindow = patch(obj.BottomAxes, ...
 'Faces', 1:4, ...
 'Vertices', NaN(4,2), ...
 'FaceColor', obj.TopLine.Color, ...

23 Developing Classes of Chart Objects

23-52

 'FaceAlpha', 0.3, ...
 'EdgeColor', 'none', ...
 'HitTest', 'off');

 % Constrain axes panning/zooming to only the X-dimension.
 obj.TopAxes.Interactions = [...
 dataTipInteraction;
 panInteraction('Dimensions','x');
 rulerPanInteraction('Dimensions','x');
 zoomInteraction('Dimensions','x')];

 % Disable pan/zoom on the bottom axes.
 obj.BottomAxes.Interactions = [];

 % Add a listener to XLim to respond to zoom events.
 addlistener(obj.TopAxes, 'XLim', 'PostSet', @(~, ~) panZoom(obj));

 % Add a callback for clicks on the bottom axes.
 obj.BottomAxes.ButtonDownFcn = @(~, ~) click(obj);
 end

 function update(obj)
 % Extract the time data from the table.
 tbl = obj.Data;
 t = tbl.Properties.RowTimes;

 % Extract the numeric variables from the table.
 S = vartype('numeric');
 numericTbl = tbl(:,S);

 % Update the data on both lines.
 set([obj.BottomLine obj.TopLine], 'XData', t, 'YData', numericTbl{:,1});

 % Create a dataTipTextRow for each variable in the timetable.
 updateDataTipTemplate(obj.TopLine, tbl)

 % Update the top axes limits.
 obj.TopAxes.YLimMode = 'auto';
 if obj.TimeLimits(1) < obj.TimeLimits(2)
 obj.TopAxes.XLim = obj.TimeLimits;
 else
 % Current time limits are invalid, so set XLimMode to auto and
 % let the axes calculate limits based on available data.
 obj.TopAxes.XLimMode = 'auto';
 obj.TimeLimits = obj.TopAxes.XLim;
 end

 % Update time window to reflect the new time limits.
 xLimits = ruler2num(obj.TimeLimits, obj.BottomAxes.XAxis);
 yLimits = obj.BottomAxes.YLim;
 obj.TimeWindow.Vertices = [xLimits([1 1 2 2]); yLimits([1 2 2 1])]';
 end

 function panZoom(obj)
 % When XLim on the top axes changes, update the time limits.
 obj.TimeLimits = obj.TopAxes.XLim;
 end

 Chart Class Containing Two Interactive Plots

23-53

 function click(obj)
 % When clicking on the bottom axes, recenter the time limits.

 % Find the center of the click using CurrentPoint.
 center = obj.BottomAxes.CurrentPoint(1,1);

 % Convert from numeric units into datetime using num2ruler.
 center = num2ruler(center, obj.BottomAxes.XAxis);

 % Find the width of the current time limits.
 width = diff(obj.TimeLimits);

 % Recenter the current time limits.
 obj.TimeLimits = center + [-1 1]*width/2;
 end
 end
end

function updateDataTipTemplate(obj, tbl)

% Create a dataTipTextRow for each variable in the timetable.
timeVariable = tbl.Properties.DimensionNames{1};
rows = dataTipTextRow(timeVariable, tbl.(timeVariable));
for n = 1:numel(tbl.Properties.VariableNames)
 rows(n+1,1) = dataTipTextRow(...
 tbl.Properties.VariableNames{n}, tbl{:,n});
end
obj.DataTipTemplate.DataTipRows = rows;

end

function mustHaveOneNumericVariable(tbl)

% Validation function for Data property.
S = vartype('numeric');
if width(tbl(:,S)) < 1
 error('TimeTableChart:InvalidTable', ...
 'Table must have at least one numeric variable.')
end

end

After saving the class file, create an instance of the chart. In this case, use the chart to examine a few
weeks within a year of bicycle traffic data.

bikeTbl = readtimetable('BicycleCounts.csv');
bikeTbl = bikeTbl(169:8954,:);
tlimits = [datetime(2015,8,6) datetime(2015,8,27)];
TimeTableChart('Data',bikeTbl,'TimeLimits',tlimits);

23 Developing Classes of Chart Objects

23-54

See Also
Functions
getLayout | timetable

Classes
matlab.graphics.chartcontainer.ChartContainer

Properties
TiledChartLayout Properties | DataTipTemplate Properties

More About
• “Develop Charts With Polar Axes, Geographic Axes, or Multiple Axes” on page 23-13
• “Overview Events and Listeners”
• “Create Custom Data Tips” on page 13-6

 Chart Class Containing Two Interactive Plots

23-55

Optimize Performance of Graphics
Programs

• “Improve Graphics Performance” on page 24-2
• “What Affects Code Execution Speed” on page 24-7
• “Judicious Object Creation” on page 24-8
• “Avoid Repeated Searches for Objects” on page 24-10
• “Screen Updates” on page 24-11
• “Optimize Code for Getting and Setting Graphics Properties” on page 24-13
• “Avoid Updating Static Data” on page 24-15
• “Transforming Objects Efficiently” on page 24-17
• “Use Low-Level Functions for Speed” on page 24-18
• “System Requirements for Graphics” on page 24-19
• “Resolving Low-Level Graphics Issues” on page 24-21

24

Improve Graphics Performance
When you create data visualizations using MATLAB graphics functions, you can use certain
techniques in your code to increase performance. This topic covers some of these techniques,
including strategies to speed up long-running animations, to quickly update plot data, and to create
visualizations that respond smoothly to user input. Use any techniques that are helpful for the type of
graphics that you create.

Improve Graphics Update Speed
When you update an existing plot or other graphics object, you can improve the performance of your
code by updating only the data that changes, instead of recreating all of the data from scratch.

For example, this code updates an axes object that contains both a surface plot and a single marker.
At each stage of the update, only the marker changes position. All of the data associated with the
surface plot and many of the marker properties remain the same at each step. Rather than updating
all the data by calling the surf and plot3 functions multiple times, update only the properties that
control the position of the marker object.

[sx,sy,sz] = peaks(500);
nframes = 490;

surf(sx,sy,sz,"EdgeColor","none")
hold on
m = plot3(sx(1,1),sy(1,1),sz(1,1),"o", ...
 "MarkerFaceColor","red", ...
 "MarkerSize",14);
hold off

for t = 1:nframes
 m.XData = sx(t+10,t);
 m.YData = sy(t,t+10);
 m.ZData = sz(t+10,t+10)+0.5;
 drawnow
end

Improve Image Loading Speed
Since R2022b

When you work with an image, you can set the MaxRenderedResolution property to control the
maximum resolution MATLAB uses to display the larger dimension of the image. The smaller
dimension adjusts to preserve the aspect ratio. The value you specify affects the on-screen display,
but it does not affect the image data, which is stored in the CData property of the image.

Specify "none" to display the image at full resolution. Specify a number to limit the size of the
displayed image. Larger numbers (and "none") provide higher quality images, but the initial images
might take longer to render. Smaller numbers provide downsampled images, but they render faster.

In general, images render faster when you specify a value that is smaller than the largest image
dimension of the original image. However, if you specify a value that is only one or a few pixels
smaller, the initial rendering of that image might take longer than rendering it at full resolution.

24 Optimize Performance of Graphics Programs

24-2

For example, read peppers.png, which is a 384-by-512 RGB image. Then call the imagesc function
to display the image using 128 pixels along the larger dimension. The smaller dimension scales down
to 96 pixels to maintain the original aspect ratio.

imdata = imread("peppers.png");
imagesc(imdata,"MaxRenderedResolution",128)

Identify Bottlenecks in Your Code
Use the Profiler to identify the functions that contribute the most time to the execution of your code.
You can then evaluate those functions for possible performance improvements.

For example, create a scatter plot of 10-by-500 element arrays using the myPlot function.

function myPlot
x = rand(10,500);
y = rand(10,500);
scatter(x,y,"blue");
end

Use the Profiler to time the execution of the myPlot function. The code takes about 2.7 seconds to
execute.

profile on
myPlot
profile viewer

 Improve Graphics Performance

24-3

Because the x and y arrays contain 500 columns of data, the scatter function creates 500 Scatter
objects. In this case, you can plot the same data by creating one object with 5000 data points instead.

function myPlot
 x = rand(10,500);
 y = rand(10,500);
 scatter(x(:),y(:),"blue");
end

Profile this updated code. The function now takes less than 0.3 second to execute.

profile on
myPlot
profile viewer

24 Optimize Performance of Graphics Programs

24-4

To learn more about using the Profiler, see “Profile Your Code to Improve Performance”.

Improve Performance of Long-Running Animations
To improve the performance of long-running animations, consider using drawnow limitrate
instead of drawnow to display updates on the screen. Both commands update the figure display, but
drawnow limitrate limits the number of updates to 20 frames per second. As a result, animations
can appear faster.

Some scenarios in which using drawnow limitrate can improve animation performance include:

• Animations in which it is important to see the most up-to-date frame, such as plots of real-time
simulation data

• Animations in which the number of frames per second is large and it is not necessary to display
every frame

For example, this code creates an animated line and adds 50,000 data points to the line in a loop.
Using drawnow limitrate in the loop limits the number of times the display is updated, which
results in a faster animation than performing an update each time through the loop.

h = animatedline;
axis([0 4*pi -1 1])
x = linspace(0,4*pi,50000);

for k = 1:length(x)
 y = sin(x(k));
 addpoints(h,x(k),y);
 drawnow limitrate
end

 Improve Graphics Performance

24-5

Provide Smooth and Responsive Axes Interactions
When you display data in an axes object, you can configure interactions with the data, such as
dragging to pan and scrolling to zoom. In general, use and configure the built-in interactions that
MATLAB provides. The built-in axes interactions are optimized to respond smoothly to user input and
can provide a more responsive experience than if you implement a custom interactivity callback such
as a WindowScrollWheelFcn.

The built-in interactions depend on the contents of the axes but typically include scrolling to zoom,
dragging to pan or rotate, and hovering or clicking to display data tips. You can enable these
interactions by calling the enableDefaultInteractivity function. In addition, you can customize
the built-in interactions for a specific chart by setting the Interactions property of the axes object.
For more information about enabling and customizing built-in interactions, see “Control Chart
Interactivity” on page 13-12.

If a fast startup time is more important for your code than enabling axes interactions, instead
consider disabling the built-in axes interactions. This action will cause the axes object to display
sooner. You can disable the built-in interactions by calling the disableDefaultInteractivity
function.

See Also

Related Examples
• “Techniques to Improve Performance”
• “Create Responsive Apps”
• “Profile Your Code to Improve Performance”

24 Optimize Performance of Graphics Programs

24-6

What Affects Code Execution Speed
In this section...
“Potential Bottlenecks” on page 24-7
“How to Improve Performance” on page 24-7

Potential Bottlenecks
Performance becomes an issue when working with large amounts of data and large numbers of
objects. In such cases, you can improve the execution speed of graphics code by minimizing the effect
of two factors that contribute to total execution time:

• Object creation — Adding new graphics objects to a scene.
• Screen updates — Updating the graphics model and sending changes to be rendered.

It is often possible to prevent these activities from dominating the total execution time of a particular
programming pattern. Think of execution time as being the sum of a number of terms:

T execution time = T creating objects + T updating + (T calculations, etc)

The examples that follow show ways to minimize the time spent in object creation and updating the
screen. In the preceding expression, the execution time does not include time spent in the actual
rendering of the screen.

How to Improve Performance
Profile your code and optimize algorithms, calculation, and other bottlenecks that are specific to your
application. Then determine if the code is taking more time in object creation functions or drawnow
(updating). You can begin to optimize both operations, beginning with the larger term in the total
time equation.

Is your code:

• Creating new objects instead of updating existing objects? See “Judicious Object Creation” on
page 24-8.

• Updating an object that has some percentage of static data? See “Avoid Updating Static Data” on
page 24-15.

• Searching for object handles. See “Avoid Repeated Searches for Objects” on page 24-10.
• Rotating, translating, or scaling objects? See “Transforming Objects Efficiently” on page 24-17.
• Querying and setting properties in the same loop? See “Optimize Code for Getting and Setting

Graphics Properties” on page 24-13.

 What Affects Code Execution Speed

24-7

Judicious Object Creation

In this section...
“Object Overhead” on page 24-8
“Do Not Create Unnecessary Objects” on page 24-8
“Use NaNs to Simulate Multiple Lines” on page 24-8
“Modify Data Instead of Creating New Objects” on page 24-9

Object Overhead
Graphics objects are complex structures that store information (data and object characteristics),
listen for certain events to occur (callback properties), and can cause changes to other objects to
accommodate their existence (update to axes limits, and so on). Therefore, creating an object
consumes resources.

When performance becomes an important consideration, try to realize your objectives in a way that
consumes a minimum amount of resources.

You can often improve performance by following these guidelines:

• Do not create unnecessary objects
• Avoid searching the object hierarchy

Do Not Create Unnecessary Objects
Look for cases where you can create fewer objects and achieve the same results. For example,
suppose you want to plot a 10-by-1000 array of points showing only markers.

This code creates 1000 line objects:

x = rand(10,1000);
y = rand(10,1000);
plot(x,y,'LineStyle','none','Marker','.','Color','b');

Convert the data from 10-by-1000 to 10000-by-1. This code creates a graph that looks the same, but
creates only one object:

plot(x(:),y(:),'LineStyle','none','Marker','.','Color','b')

Use NaNs to Simulate Multiple Lines
If coordinate data contains NaNs, MATLAB does not render those points. You can add NaNs to vertex
data to create line segments that look like separate lines. Place the NaNs at the same element
locations in each vector of data. For example, this code appears to create three separate lines:

x = [0:10,NaN,20:30,NaN,40:50];
y = [0:10,NaN,0:10,NaN,0:10];
line(x,y)

24 Optimize Performance of Graphics Programs

24-8

Modify Data Instead of Creating New Objects
To view different data on what is basically the same graph, it is more efficient to update the data of
the existing objects (lines, text, etc.) rather than recreating the entire graph.

For example, suppose you want to visualize the effect on your data of varying certain parameters.

1 Set the limits of any axis that can be determined in advance, or set the axis limits modes to
manual.

2 Recalculate the data using the new parameters.
3 Use the new data to update the data properties of the lines, text, etc. objects used in the graph.
4 Call drawnow to update the figure (and all child objects in the figure).

For example, suppose you want to update a graph as data changes:

figure
z = peaks;
h = surf(z);
drawnow
zlim([min(z(:)), max(z(:))]);
for k = 1:50
 h.ZData = (0.01+sin(2*pi*k/20)*z);
 drawnow
end

 Judicious Object Creation

24-9

Avoid Repeated Searches for Objects
When you search for handles, MATLAB must search the object hierarchy to find matching handles,
which is time-consuming. Saving handles that you need to access later is a faster approach. Array
indexing is generally faster than using findobj or findall.

This code creates 500 line objects and then calls findobj in a loop.

figure
ax = axes;
for ix=1:500
 line(rand(1,5),rand(1,5),'Tag',num2str(ix),'Parent',ax);
end
drawnow;
for ix=1:500
 h = findobj(ax,'Tag',num2str(ix));
 set(h,'Color',rand(1,3));
end
drawnow;

A better approach is to save the handles in an array and index into the array in the second for loop.

figure
ax = axes;
h = gobjects(1,500);
for ix = 1:500
 h(ix) = line(rand(1,5),rand(1,5),'Tag',num2str(ix),'Parent',ax);
end
drawnow;
% Index into handle array
for ix=1:500
 set(h(ix),'Color',rand(1,3));
end
drawnow

Limit Scope of Search
If searching for handles is necessary, limit the number of objects to be searched by specifying a
starting point in the object tree. For example, specify the starting point as the figure or axes
containing the objects for which you are searching.

Another way to limit the time expended searching for objects is to restrict the depth of the search.
For example, calling findobj with the 'flat' option restricts the search to the objects in a specific
handle array.

Use the findobj and findall functions to search for handles.

For more information, see “Find Objects” on page 18-4

24 Optimize Performance of Graphics Programs

24-10

Screen Updates
In this section...
“MATLAB Graphics System” on page 24-11
“Managing Updates” on page 24-11

MATLAB Graphics System
MATLAB graphics is implemented using multiple threads of execution. The following diagram
illustrates how the main and renderer threads interact during the update process. The MATLAB side
contains the graphics model, which describes the geometry rendered by the graphics hardware. The
renderer side has a copy of the geometry in its own memory system. The graphics hardware can
render the screen without blocking MATLAB execution.

When the graphics model changes, these updates must be passed to the graphics hardware. Sending
updates can be a bottleneck because the graphics hardware does not support all MATLAB data types.
The update process must convert the data into the correct form.

When geometry is in the graphics hardware memory, you can realize performance advantages by
using this data and minimizing the data sent in an update.

Managing Updates
Updates involve these steps:

• Collecting changes that require an update to the screen, such as property changes and objects
added.

 Screen Updates

24-11

• Updating dependencies within the graphics model.
• Sending these updates to the renderer.
• Waiting for the renderer to accept these updates before returning execution to MATLAB.

You initiate an update by calling the drawnow function. drawnow completes execution when the
renderer accepts the updates, which can happen before the renderer completes updating the screen.

Explicit Updates

During function execution, adding graphics objects to a figure or changing properties of existing
objects does not necessarily cause an immediate update of the screen. The update process occurs
when there are changes to graphics that need to be updated, and the code:

• Calls drawnow, pause, figure, or other functions that effectively cause an update (see
drawnow).

• Queries a property whose value depends on other properties (see “Automatically Calculated
Properties” on page 24-13).

• Completes execution and returns control to the MATLAB prompt or debugger.

24 Optimize Performance of Graphics Programs

24-12

Optimize Code for Getting and Setting Graphics Properties

In this section...
“Automatically Calculated Properties” on page 24-13
“Inefficient Cycles of Sets and Gets” on page 24-14
“Changing Text Extent to Rotate Labels” on page 24-14

Automatically Calculated Properties
Certain properties have dependencies on the value of other properties. MATLAB automatically
calculates the values of these properties and updates their values based on the current graphics
model. For example, axis limits affect the values used for axis ticks, which, in turn, affect the axis tick
labels.

When you query a calculated property, MATLAB performs an implicit drawnow to ensure all property
values are up to date before returning the property value. The query causes a full update of all
dependent properties and an update of the screen.

MATLAB calculates the values of certain properties based on other values on which that property
depends. For example, plotting functions automatically create an axes with axis limits, tick labels, and
a size appropriate for the plotted data and the figure size.

MATLAB graphics performs a full update, if necessary, before returning a value from a calculated
property to ensure the returned value is up to date.

This table lists some of the more commonly calculated properties.

Object Properties When MATLAB Calculates these
Properties

Axes CameraPosition, CameraTarget,
CameraUpVector, CameraViewAngle

Always

 Position, OuterPosition,
TightInset

Always

 XLim, YLim, ZLim Always
 XTick, YTick, ZTick, XMinorTick,

YMinorTick, ZMinorTick
Always

 XTickLabel, YTickLabel,
ZTickLabel, TickDir

Always

 SortMethod Always
Text Extent Always
 Position Only when the text object is used as an

axes title or an axis label
 FontSize, FontWeight Only when the text object is used as an

axes title or an axis label

 Optimize Code for Getting and Setting Graphics Properties

24-13

Inefficient Cycles of Sets and Gets
When you set property values, you change the state of the graphics model and mark it as needing to
be updated. When you query an autocalculated property, MATLAB needs to perform an update if the
graphics model and graphics hardware are not in sync.

When you get and set properties in the same loop, you can create a situation where updates are
performed with every pass through the loop.

• The get causes an update.
• The set marks the graphics model as needing an update.

The cycle is repeated with each pass through the loop. It is better to execute all property queries in
one loop, then execute all property sets in another loop, as shown in the following example.

This example gets and sets the text Extent property.

Code with Poor Performance Code with Better Performance
h = gobjects(1,500);
p = zeros(500,3);
for ix = 1:500
 h(ix) = text(ix/500,ix/500,num2str(ix));
end
drawnow

% Gets and sets in the same loop,
% prompting a full update at each pass
for ix = 1:500
 pos = get(h(ix),'Position');
 ext = get(h(ix),'Extent');
 p(ix,:) = [pos(1)+(ext(3)+ext(1)), ...
 pos(2)+ext(2)+ext(4),0];
 set(h(ix),'Position',p(ix,:))
end
drawnow

h = gobjects(1,500);
p = zeros(500,3);
for ix = 1:500
 h(ix) = text(ix/500,ix/500,num2str(ix));
end
drawnow

% Get and save property values
for ix=1:500
 pos = get(h(ix),'Position');
 ext = get(h(ix),'Extent');
 p(ix,:) = [pos(1)+(ext(3)+ext(1)), ...
 pos(2)+ext(2)+ext(4),0];
end

% Set the property values and
% call a drawnow after the loop
for ix=1:500
 set(h(ix),'Position',p(ix,:));
end
drawnow

This code performs poorly because:

• The Extent property depends on other values,
such as screen resolution, figure size, and axis
limits, so querying this property can cause a full
update.

• Each set of the Position property makes a full
update necessary when the next get of the Extent
property occurs.

The performance is better because this code:

• Queries all property values in one loop and stores
these values in an array.

• Sets all property values in a separate loop.
• Calls drawnow after the second loop finishes.

Changing Text Extent to Rotate Labels
In cases where you change the text Extent property to rotate axes labels, it is more efficient to use
the axes properties XTickLabelRotation, YTickLabelRotation, and ZTickLabelRotation.

24 Optimize Performance of Graphics Programs

24-14

Avoid Updating Static Data
If only a small portion of the data defining a graphics scene changes with each update of the screen,
you can improve performance by updating only the data that changes. The following example
illustrates this technique.

Code with Poor Performance Code with Better Performance
In this example, a marker moves along the surface by
creating both objects with each pass through the loop.
[sx,sy,sz] = peaks(500);
nframes = 490;

for t = 1:nframes
 surf(sx,sy,sz,'EdgeColor','none')
 hold on
 plot3(sx(t+10,t),sy(t,t+10),...
 sz(t+10,t+10)+0.5,'o',...
 'MarkerFaceColor','red',...
 'MarkerSize',14)
 hold off
 drawnow
end

Create the surface, then update the XData, YData,
and ZData of the marker in the loop. Only the marker
data changes in each iteration.
[sx,sy,sz] = peaks(500);
nframes = 490;

surf(sx,sy,sz,'EdgeColor','none')
hold on
h = plot3(sx(1,1),sy(1,1),sz(1,1),'o',...
 'MarkerFaceColor','red',...
 'MarkerSize',14);
hold off

for t = 1:nframes
 set(h,'XData',sx(t+10,t),...
 'YData',sy(t,t+10),...
 'ZData',sz(t+10,t+10)+0.5)
 drawnow
end

Segmenting Data to Reduce Update Times
Consider the case where an object’s data grows very large while code executes in a loop, such as a
line tracing a signal over time.

With each call to drawnow, the updates are passed to the renderer. The performance decreases as
the data arrays grow in size. If you are using this pattern, adopt the segmentation approach
described in the example on the right.

 Avoid Updating Static Data

24-15

Code with Poor Performance Code with Better Performance
% Grow data
figure('Position',[10,10,1500,400])
n = 5000;

h = stairs(1,1);
ax = gca;
ax.XLim = [1,n];
ax.YLim = [0,1];
ax.ZLim = [0,1];
ax.NextPlot = 'add';

xd = 1:n;
yd = rand(1,n);

tic
for ix = 1:n
 set(h,'XData',xd(1:ix),'YData',yd(1:ix));
 drawnow;
end
toc

% Segment data
figure('Position',[10,10,1500,400])
n = 5000;
seg_size = 500;
xd = 1:n;
yd = rand(1,n);

h = stairs(1,1);
ax = gca;
ax.XLim = [1,n];
ax.YLim = [0,1];
ax.ZLim = [0,1];
ax.NextPlot = 'add';

tic
start = 1;
for ix=1:n
 % Limit object size
 if (ix-start > seg_size)
 start = ix-1;
 h = stairs(1,1);
 end
 set(h,'XData',xd(start:ix),...
 'YData',yd(start:ix));
 % Update display in 50 point chunks
 if mod(ix,50) == 0
 drawnow;
 end
end
toc

The performance of this code is better because the
limiting factor is the amount of data sent during
updates.

24 Optimize Performance of Graphics Programs

24-16

Transforming Objects Efficiently
Moving objects, for example by rotation, requires transforming the data that defines the objects. You
can improve performance by taking advantage of the fact that graphics hardware can apply
transforms to the data. You can then avoid sending the transformed data to the renderer. Instead, you
send only the four-by-four transform matrix.

To realize the performance benefits of this approach, use the hgtransform function to group the
objects that you want to move.

The following examples define a sphere and rotate it using two techniques to compare performance:

• The rotate function transforms the sphere’s data and sends the data to the renderer thread with
each call to drawnow.

• The hgtransform function sends the transform matrix for the same rotation to the renderer
thread.

Code with Poor Performance Code with Better Performance
When object data is large, the update bottleneck
becomes a limiting factor.
% Using rotate
figure
[x,y,z] = sphere(270);

s = surf(x,y,z,z,'EdgeColor','none');
axis vis3d
for ang = 1:360
 rotate(s,[1,1,1],1)
 drawnow
end

Using hgtransform applies the transform on the
renderer side of the bottleneck.
% Using hgtransform
figure
ax = axes;
[x,y,z] = sphere(270);

% Transform object contains the surface
grp = hgtransform('Parent',ax);
s = surf(ax,x,y,z,z,'Parent',grp,...
 'EdgeColor','none');

view(3)
grid on
axis vis3d

% Apply the transform
tic
for ang = linspace(0,2*pi,360)
 tm = makehgtform('axisrotate',[1,1,1],ang);
 grp.Matrix = tm;
 drawnow
end
toc

 Transforming Objects Efficiently

24-17

Use Low-Level Functions for Speed
The features that make plotting functions easy to use also consume computer resources. If you want
to maximize graphing performance, use low-level functions and disable certain automatic features.

Low-level graphics functions (e.g., line vs. plot, surface vs. surf) perform fewer operations and
therefore are faster when you are creating many graphics objects.

The low-level graphics functions are line, patch, rectangle, surface, text, image, axes, and
light

24 Optimize Performance of Graphics Programs

24-18

System Requirements for Graphics
In this section...
“Minimum System Requirements” on page 24-19
“Recommended System Requirements” on page 24-19
“Upgrade Your Graphics Drivers” on page 24-19
“Graphics Features That Have Specific Requirements” on page 24-19

Minimum System Requirements
All systems support most of the common MATLAB graphics features.

Recommended System Requirements
For the best results with graphics, your system must have:

• At least 1 GB of GPU memory.
• Graphics hardware that supports a hardware-accelerated implementation of OpenGL 2.1 or later.

Most graphics hardware released since 2006 has OpenGL 2.1 or later. If you have an earlier
version of OpenGL, most graphics features still work, but some advanced graphics features are
unavailable. For more information, see “Graphics Features That Have Specific Requirements” on
page 24-19. For the best performance, OpenGL 4.0 or later is recommended.

• The latest versions of graphics drivers available from your computer manufacturer or graphics
hardware vendor.

For more information on determining your graphics hardware, see rendererinfo.

Starting in R2015b, MATLAB is a DPI-aware application that takes advantage of your full system
resolution. MATLAB graphics look sharp and properly scaled on all systems, including Macintosh
systems connected to Apple Retina displays and high-DPI Windows systems.

Upgrade Your Graphics Drivers
Graphics hardware vendors frequently provide updated graphics drivers that improve hardware
performance. To help ensure that your graphics hardware works with MATLAB, upgrade your
graphics drivers to the latest versions available.

• On Windows systems, check your computer manufacturer website for driver updates, such as
Lenovo®, HP®, or Dell®. If no updates are provided, then check your graphics hardware vendor
website, such as the AMD® website, NVIDIA® website, or Intel® website.

• On Linux systems, use proprietary vendor drivers instead of open-source replacements.
• On Macintosh systems, the graphics drivers are part of the operating system. Use the latest

updates provided.

Graphics Features That Have Specific Requirements
Most graphics features work on all systems. However, support for some graphics features depends
on:

 System Requirements for Graphics

24-19

https://www.amd.com/en/support
https://www.nvidia.com/Download/index.aspx
https://www.intel.com/content/www/us/en/support/detect.html

• Whether you are using a hardware, basic hardware, or software implementation of the graphics
renderer. By default, MATLAB uses hardware-accelerated graphics if your graphics hardware
supports it. Basic hardware and software OpenGL are alternate options that you can use to work
around low-level graphics issues. In some cases, MATLAB automatically switches to software
OpenGL. For more information, see rendererinfo.

• The version of the renderer implementation, for example, OpenGL 2.1.

This table lists the advanced graphics features and the circumstances under which they are
supported. For more information on the features, see rendererinfo.

Graphics
Feature

Hardware
OpenGL

Basic
Hardware
OpenGL

Software
OpenGL on
Windows

Software
OpenGL on
Linux

WebGL™

Graphics
Smoothing

Supported for
OpenGL 2.1 or
higher

Supported for
OpenGL 2.1 or
higher

Not supported Not supported Supported

Depth Peel
Transparency

Supported for
OpenGL 2.1 or
higher

Disabled Not supported Supported Supported

Align Vertex
Centers

Supported for
OpenGL 2.1 or
higher

Disabled Not supported Not supported Supported

Hardware-
accelerated
markers

Supported for
OpenGL 4.0 or
higher

Disabled Not supported Not supported Supported

See Also
Functions
opengl | rendererinfo

More About
• “Resolving Low-Level Graphics Issues” on page 24-21

24 Optimize Performance of Graphics Programs

24-20

Resolving Low-Level Graphics Issues

MATLAB can encounter low-level issues when creating graphics on your system. For example, bar
edges might be missing from bar charts, stems might be missing from stem plots, or your graphics
hardware might run out of memory. You can encounter these issues while creating 2-D or 3-D charts,
using a Simulink® model that contains scopes, or using UIs from a MathWorks toolbox. These issues
are often due to older graphics hardware or outdated graphics drivers. To resolve them, try the
options described here.

Upgrade Your Graphics Hardware Drivers
Graphics hardware vendors frequently provide updated graphics drivers that improve hardware
performance. To help ensure that your graphics hardware works with MATLAB, upgrade your
graphics drivers to the latest versions available.

• On Windows systems, check for driver updates on the website of your manufacturer, such as
Lenovo, HP, or Dell. If no updates are provided, then check the website of your graphics hardware
vendor, such as AMD , NVIDIA , or Intel .

• On Linux systems, use proprietary vendor drivers instead of open-source replacements.
• On Macintosh systems, the graphics drivers are part of the operating system. Use the latest

updates provided.

Use graphics hardware that supports a hardware-accelerated implementation of OpenGL 2.1 or later.
Most graphics hardware released since 2006 has OpenGL 2.1 or later. If you have an earlier version
of OpenGL, most graphics features still work, but some advanced graphics features are unavailable.
For the best performance, OpenGL 4.0 or later is recommended. For more information on
determining your graphics hardware, see rendererinfo.

Choose a Renderer Implementation for Your System
MATLAB displays graphics using a hardware-accelerated, basic hardware-accelerated, or software
implementation of the graphics renderer. By default, MATLAB tries to use a hardware-accelerated
implementation if your graphics hardware supports it. You can work around many graphics issues by
switching to either a software implementation or a basic hardware-accelerated implementation.
These alternate implementations do not support some advanced graphics features.

In some cases, MATLAB automatically switches to a software implementation:

• If your system does not have the necessary graphics hardware.
• If you are using a graphics driver with known issues, an older graphics driver, or graphics

virtualization. Update your graphics drivers to the latest versions available.
• If a previous MATLAB session crashed due to a graphics issue. If the previous session was using

software OpenGL and crashed, then subsequent sessions use a more stable version of software
OpenGL that has fewer capabilities.

The availability of hardware-accelerated graphics when using remote desktop on Windows systems
varies. If you try to use hardware-accelerated graphics when it is not supported, MATLAB returns a
warning message and uses software OpenGL instead. It is possible that updating your graphics
drivers to the latest versions will enable support for hardware-accelerated graphics.

 Resolving Low-Level Graphics Issues

24-21

https://www.amd.com/en/support
https://www.nvidia.com/Download/index.aspx
https://www.intel.com/content/www/us/en/support/detect.html

To determine which implementation MATLAB is using, call the rendererinfo function. For example,
this command gets the information for the current axes and stores it in a structure called info.

info = rendererinfo(gca)

This structure also provides the name of the graphics renderer in the GraphicsRenderer field. For
example, if MATLAB is using hardware-accelerated OpenGL, the field returns 'OpenGL Hardware'.
If it is using software OpenGL, the field returns 'OpenGL Software'.

Specify OpenGL Implementation for Current Session

To specify an OpenGL implementation for the current session of MATLAB, use one of these
techniques.

• Software OpenGL — Start MATLAB from the command prompt on your system using the command
matlab -softwareopengl. This command works only on Windows and Linux systems.
Macintosh systems do not support software OpenGL.

• Basic hardware-accelerated OpenGL — Type opengl hardwarebasic at the MATLAB command
prompt.

• Hardware-accelerated OpenGL — Type opengl hardware at the MATLAB command prompt.

Specify OpenGL Implementation for Future Sessions

To set your preferences so that MATLAB always starts with the specified implementation of OpenGL,
use one of these techniques.

• Software OpenGL — Type opengl('save','software') at the MATLAB command prompt.
Then, restart MATLAB.

• Basic hardware-accelerated OpenGL — Type opengl('save','hardwarebasic') at the
MATLAB command prompt. Then, restart MATLAB.

• Hardware-accelerated OpenGL — Type opengl('save','hardware') at the MATLAB command
prompt. Then, restart MATLAB.

• Undo preference setting — Execute opengl('save','none') at the MATLAB command line.
Then, restart MATLAB.

Fix Out-of-Memory Issues
Graphics hardware with limited graphics memory can cause poor performance or lead to out-of-
memory issues. Improve performance and work around memory issues with these changes:

• Use smaller figure windows.
• Turn off anti-aliasing by setting the GraphicsSmoothing property of the figure to 'off'.
• Do not use transparency.
• Use software OpenGL.

Contact Technical Support
If you cannot resolve the issues using the options described here, then you might have encountered a
bug in MATLAB. Contact MathWorks technical support and provide the following information:

24 Optimize Performance of Graphics Programs

24-22

• The output returned by info = rendererinfo(gca).
• Whether your code runs without error when using software OpenGL.
• Whether your code runs without error on a different computer. Provide the output of

rendererinfo for all computers you have tested your code on.
• Some error messages contain a link to a file with details about the graphics error you

encountered. If a link to this file is provided, include this file with your service request.

Create a Service Request at https://www.mathworks.com/support/contact_us.

See Also
opengl | rendererinfo

More About
• “System Requirements for Graphics” on page 24-19

 Resolving Low-Level Graphics Issues

24-23

https://www.mathworks.com/support/contact_us.html

	Line Plots
	Types of MATLAB Plots
	Create Common 2-D Plots
	Plots That Support Tables
	Create Simple Line Plots
	Customize Line Plots
	Customize Scatter Plots
	Update Plot by Modifying the Table
	Combine Table and Vector Data

	Create 2-D Line Plot
	Create Line Plot with Markers
	Add Markers to Line Plot
	Specify Marker Size and Color
	Control Placement of Markers Along Line
	Display Markers at Maximum and Minimum Data Points
	Revert to Default Marker Locations
	Supported Marker Symbols

	Combine Line and Bar Charts Using Two y-Axes
	Combine Line and Stem Plots
	Overlay Stairstep Plot and Line Plot
	Line Plot with Confidence Bounds
	Plot Imaginary and Complex Data

	Pie Charts, Bar Plots, and Histograms
	Types of Bar Graphs
	Modify Baseline of Bar Graph
	Overlay Bar Graphs
	Bar Chart with Error Bars
	Color 3-D Bars by Height
	Compare Data Sets Using Overlayed Area Graphs
	Offset Pie Slice with Greatest Contribution
	Add Legend to Pie Chart
	Label Pie Chart With Text and Percentages
	Color Analysis with Bivariate Histogram
	Control Categorical Histogram Display
	Replace Discouraged Instances of hist and histc
	Old Histogram Functions (hist, histc)
	Recommended Histogram Functions
	Differences Requiring Code Updates

	Polar Plots
	Plotting in Polar Coordinates
	Customize Polar Axes
	Compass Labels on Polar Axes

	Contour Plots
	Label Contour Plot Levels
	Change Fill Colors for Contour Plot
	Highlight Specific Contour Levels
	Combine Contour Plot and Quiver Plot
	Contour Plot with Major and Minor Grid Lines

	Specialized Charts
	Create Heatmap from Tabular Data
	Create Word Cloud from String Arrays
	Explore Table Data Using Parallel Coordinates Plot

	Geographic Axes and Charts
	Create Maps Using Latitude and Longitude Data
	Pan and Zoom Behavior in Geographic Axes and Charts
	Geographic Bubble Charts Overview
	Geographic Bubble Chart Legends
	View Cyclone Track Data in Geographic Density Plot
	View Density of Cellular Tower Placement
	Customize Layout of Geographic Axes
	Deploy Geographic Axes and Charts
	Use Geographic Bubble Chart Properties
	Control Bubble Size
	Control Bubble Color

	Specify Map Limits with Geographic Axes
	Display Several Geographic Bubble Charts Centered Within Specified Limits

	Access Basemaps for Geographic Axes and Charts
	Display "darkwater" on Geographic Plots
	Display "darkwater" on Geographic Bubble Charts
	Download Basemaps
	Basemap Caching Behavior

	Create Geographic Bubble Chart from Tabular Data

	Animation
	Animation Techniques
	Updating the Screen
	Optimizing Performance

	Trace Marker Along Line
	Move Group of Objects Along Line
	Animate Graphics Object
	Line Animations
	Record Animation for Playback
	Record and Play Back Movie
	Capture Entire Figure for Movie

	Animating a Surface

	Titles and Labels
	Add Title and Axis Labels to Chart
	Add Legend to Graph
	Add Text to Chart
	Add Annotations to Chart
	Greek Letters and Special Characters in Chart Text
	Include Greek Letters
	Include Superscripts and Annotations
	TeX Markup Options
	Create Text with LaTeX
	Create Plot Titles, Tick Labels, and Legends with LaTeX

	Make the Graph Title Smaller

	Axes Appearance
	Specify Axis Limits
	Specify Axis Tick Values and Labels
	Add Grid Lines and Edit Placement
	Combine Multiple Plots
	Customized Presentations and Special Effects with Tiled Chart Layouts
	Stacked Colorbar and Plot with Shared Title
	Colorbar That Adjusts as Tiles Reflow
	Irregular Grid of Plots
	Main Plot with Adjacent Smaller Plots
	Region-of-Interest Plot

	Create Chart with Two y-Axes
	Modify Properties of Charts with Two y-Axes
	Change Axes Properties
	Change Ruler Properties
	Specify Colors Using Default Color Order

	Display Data with Multiple Scales and Axes Limits
	Display Data with Two y-Axes
	Display Data with Multiple x-Axes and y-Axes
	Plot Data on Discontinuous x-Axis
	Display Two Sets of Data with Separate Colorbars

	Control Ratio of Axis Lengths and Data Unit Lengths
	Plot Box Aspect Ratio
	Data Aspect Ratio
	Revert Back to Default Ratios

	Control Axes Layout
	Position-Related Properties and Functions
	Position and Margin Boundaries
	Position for Square or Constrained Aspect Ratios
	Controlling Automatic Resize Behavior
	Stretch-to-Fill Behavior

	Manipulating Axes Aspect Ratio
	Axes Aspect Ratio Properties
	Default Aspect Ratio Selection
	Maintaining the Axes Proportions with Figure Resize
	Aspect Ratio Properties
	Displaying Real Objects

	Specify Plot Colors
	Types of Color Values
	Specify Color of a Bar Chart
	Specify Marker Colors in a Scatter Plot
	Specify Colors in a Series of Plots

	Specify Line and Marker Appearance in Plots
	Line Styles
	Markers
	Specify Combinations of Colors, Line Styles, and Markers
	Modify Line Width, Marker Fill, and Marker Outline

	Control How Plotting Functions Select Colors and Line Styles
	How Automatic Assignment Works
	Changing Color Schemes and Line Styles
	Changing Indices into the ColorOrder and LineStyleOrder Arrays

	Clipping in Plots and Graphs
	Using Graphics Smoothing

	Coloring Graphs
	Creating Colorbars
	Change Color Scheme Using a Colormap
	How Surface Plot Data Relates to a Colormap
	Relationship Between the Surface and the Colormap
	Change the Direction or Pattern of Colors

	How Image Data Relates to a Colormap
	How Patch Data Relates to a Colormap
	Relationship of the Colormap to x-, y-, and z-Coordinate Arrays
	Relationship of the Colormap to Face-Vertex Data

	Control Colormap Limits
	Differences Between Colormaps and Truecolor
	Differences in Workflow
	Differences in Visual Presentation

	Lighting
	Lighting Overview
	Lighting Commands
	Light Objects
	Properties That Affect Lighting
	Examples of Lighting Control

	Reflectance Characteristics of Graphics Objects
	Specular and Diffuse Reflection
	Ambient Light
	Specular Exponent
	Specular Color Reflectance
	Back Face Lighting
	Positioning Lights in Data Space

	Transparency
	Add Transparency to Graphics Objects
	What Is Transparency?
	Graphics Objects that Support Transparency
	Create Area Chart with Transparency
	Create Bar Chart with Transparency
	Create Scatter Chart with Transparency
	Vary Transparency Using Alpha Data
	Vary Surface Chart Transparency
	Vary Patch Object Transparency

	Changing Transparency of Images, Patches or Surfaces
	Modify the Alphamap
	Default Alpha Map
	Example — Modifying the Alphamap

	Data Exploration
	Interactively Explore Plotted Data
	Zoom, Pan, and Rotate Data
	Display Data Values Using Data Tips
	Select and Modify Data Values Using Data Brushing
	Customize Plots Using Property Inspector

	Create Custom Data Tips
	Change Labels and Add Row
	Show Table Values in Data Tips

	Automatically Refresh Plot After Changing Data
	Update Plot Using Data Linking
	Update Plot Using Data Source Properties

	Control Chart Interactivity
	Show or Hide Axes Toolbar
	Customize Axes Toolbar
	Enable or Disable Built-In Interactions
	Customize Built-In Interactions

	Camera Views
	View Overview
	Viewing 3-D Graphs and Scenes
	Positioning the Viewpoint
	Setting the Aspect Ratio
	Default Views

	Setting the Viewpoint with Azimuth and Elevation
	Azimuth and Elevation

	Camera Graphics Terminology
	View Control with the Camera Toolbar
	Camera Toolbar
	Camera Motion Controls
	Orbit Camera
	Orbit Scene Light
	Pan/Tilt Camera
	Move Camera Horizontally/Vertically
	Move Camera Forward and Backward
	Zoom Camera
	Camera Roll

	Dollying the Camera
	Summary of Techniques
	Implementation

	Moving the Camera Through a Scene
	Summary of Techniques
	Graph the Volume Data
	Set the View
	Specify the Light Source
	Select the Lighting Method
	Define the Camera Path as a Stream Line
	Implement the Fly-Through

	Low-Level Camera Properties
	Camera Properties You Can Set
	Default Viewpoint Selection
	Moving In and Out on the Scene
	Making the Scene Larger or Smaller
	Revolving Around the Scene
	Rotation Without Resizing
	Rotation About the Viewing Axis

	Understanding View Projections
	Two Types of Projections
	Projection Types and Camera Location

	Displaying Bit-Mapped Images
	Working with Images in MATLAB Graphics
	What Is Image Data?
	Supported Image Formats

	Image Types
	Indexed Images
	Grayscale (Intensity) Images
	RGB (Truecolor) Images

	8-Bit and 16-Bit Images
	Indexed Images
	Intensity Images
	RGB Images
	Mathematical Operations Support for uint8 and uint16
	Other 8-Bit and 16-Bit Array Support
	Converting an 8-Bit RGB Image to Grayscale
	Summary of Image Types and Numeric Classes

	Read, Write, and Query Image Files
	Working with Image Formats
	Reading a Graphics Image
	Writing a Graphics Image
	Subsetting a Graphics Image (Cropping)
	Obtaining Information About Graphics Files

	Displaying Graphics Images
	Image Types and Display Methods
	Controlling Aspect Ratio and Display Size

	The Image Object and Its Properties
	Image CData
	Image CDataMapping
	XData and YData
	Add Text to Image Data
	Additional Techniques for Fast Image Updating

	Printing Images
	Convert Image Graphic or Data Type
	Displaying Image Data
	Create and Compare Resizing Interpolation Kernels

	Printing and Saving
	Print Figure from File Menu
	Simple Printout
	Preserve Background Color and Tick Values
	Figure Size and Placement
	Line Width and Font Size

	Copy Figure to Clipboard from Edit Menu
	Copy Figure to Clipboard
	Specify Format, Background Color, and Size Options

	Customize Figure Before Saving
	Set Figure Size
	Set Figure Background Color
	Set Figure Font Size and Line Width
	Save Figure to File
	Save Figure Settings for Future Use
	Apply Settings to Another Figure
	Restore Figure to Original Settings
	Customize Figure Programmatically

	Save Plot as Image or Vector Graphics File
	Save Plots Interactively
	Save Plots Programmatically
	Open Saved Plots in Other Applications

	Save Figure with Specific Size, Resolution, or Background Color
	Specify Resolution
	Specify Size
	Specify Background Color
	Preserve Axis Limits and Tick Values

	Save Figure to Reopen in MATLAB Later
	Save Figure to FIG-File
	Generate Code to Recreate Figure

	Saving and Copying Plots with Minimal White Space
	Saving or Copying a Single Plot
	Saving or Copying Multiple Plots in a Figure

	Graphics Properties
	Modify Graphics Objects
	Graphics Object Hierarchy
	MATLAB Graphics Objects
	Graphs Are Composed of Specific Objects
	Organization of Graphics Objects

	Access Property Values
	Object Properties and Dot Notation
	Graphics Object Variables Are Handles
	Listing Object Properties
	Modify Properties with set and get
	Multi Object/Property Operations

	Default Property Values
	Predefined Values for Properties
	Specify Default Values
	Where in Hierarchy to Define Default
	List Default Values
	Set Properties to the Current Default
	Remove Default Values
	Set Properties to Factory-Defined Values
	List Factory-Defined Property Values
	Reserved Words

	Default Values for Automatically Calculated Properties
	What Are Automatically Calculated Properties
	Default Values for Automatically Calculated Properties

	How MATLAB Finds Default Values
	Factory-Defined Property Values
	Multilevel Default Values

	Object Identification
	Special Object Identifiers
	Getting Handles to Special Objects
	The Current Figure, Axes, and Object
	Callback Object and Callback Figure

	Find Objects
	Find Objects with Specific Property Values
	Find Text by String Property
	Use Regular Expressions with findobj
	Limit Scope of Search

	Copy Objects
	Copying Objects with copyobj
	Copy Single Object to Multiple Destinations.
	Copying Multiple Objects

	Delete Graphics Objects
	How to Delete Graphics Objects
	Handles to Deleted Objects

	Working with Graphics Objects
	Graphics Object Handles
	What You Can Do with Handles
	What You Cannot Do with Handles

	Preallocate Arrays of Graphics Objects
	Test for Valid Handle
	Handles in Logical Expressions
	If Handle Is Valid
	If Result Is Empty
	If Handles Are Equal

	Graphics Arrays

	Graphics Object Callbacks
	Create Callbacks for Graphics Objects
	What Is a Callback?
	Create Basic Callback
	Create Callback with Additional Input Arguments
	Create Callback as a Default

	Button Down Callback Function
	When to Use a Button Down Callback
	How to Define a Button Down Callback

	Define a Context Menu
	When to Use a Context Menu
	How to Define a Context Menu

	Define an Object Creation Callback
	Related Information

	Define an Object Deletion Callback
	Capturing Mouse Clicks
	Properties That Control Response to Mouse Clicks
	Combinations of PickablePart/HitTest Values
	Passing Mouse Click Up the Hierarchy

	Pass Mouse Click to Group Parent
	Objective and Design
	Object Hierarchy and Key Properties
	MATLAB Code

	Pass Mouse Click to Obscured Object

	Group Objects
	Object Groups
	Create Object Groups
	Parent Specification
	Visible and Selected Properties of Group Children

	Transforms Supported by hgtransform
	Transforming Objects
	Rotation
	Translation
	Scaling
	The Default Transform
	Disallowed Transforms: Perspective
	Disallowed Transforms: Shear
	Absolute vs. Relative Transforms
	Combining Transforms into One Matrix
	Undoing Transform Operations

	Rotate About an Arbitrary Axis
	Translate to Origin Before Rotating
	Rotate Surface

	Nest Transforms for Complex Movements

	Controlling Graphics Output
	Control Graph Display
	What You Can Control
	Targeting Specific Figures and Axes

	Prepare Figures and Axes for Graphs
	Behavior of MATLAB Plotting Functions
	How the NextPlot Properties Control Behavior
	Control Behavior of User-Written Plotting Functions

	Use newplot to Control Plotting
	Responding to Hold State
	Prevent Access to Figures and Axes
	Why Prevent Access
	How to Prevent Access

	Developing Classes of Chart Objects
	Chart Development Overview
	Structure of a Chart Class
	Implicit Constructor Method
	Public and Private Property Blocks
	Setup Method
	Update Method
	Example: Confidence Bounds Chart
	Support Common Graphics Features

	Write Constructors for Chart Classes
	Example: Confidence Bounds Chart with Custom Constructor

	Develop Charts With Polar Axes, Geographic Axes, or Multiple Axes
	Create a Single Polar or Geographic Axes Object
	Create a Tiling of Multiple Axes Objects
	Example: Chart Containing Geographic and Cartesian Axes

	Managing Properties of Chart Classes
	Initialize Property Values
	Validate Property Values
	Customize the Property Display
	Optimize the update Method
	Example: Optimized Isosurface Chart with Customized Property Display

	Enabling Convenience Functions for Setting Axes Properties
	Support for Different Types of Properties
	Enable Functions for Noncomputed Properties
	Enable Functions for Computed Properties
	Chart Class That Supports title, xlim, and ylim Functions

	Saving and Loading Instances of Chart Classes
	Coding Pattern for Saving and Loading Axes Changes
	Define a Protected Property for Storing the Chart State
	Define a get Method for Retrieving the Chart State
	Define a Protected Method That Updates the Axes
	Example: 3-D Plot That Stores Axis Limits and View

	Chart Class with Custom Property Display
	Chart Class with Variable Number of Lines
	Optimized Chart Class for Displaying Variable Number of Lines
	Chart Class for Displaying Variable Size Tiling of Plots
	Chart Class Containing Two Interactive Plots

	Optimize Performance of Graphics Programs
	Improve Graphics Performance
	Improve Graphics Update Speed
	Improve Image Loading Speed
	Identify Bottlenecks in Your Code
	Improve Performance of Long-Running Animations
	Provide Smooth and Responsive Axes Interactions

	What Affects Code Execution Speed
	Potential Bottlenecks
	How to Improve Performance

	Judicious Object Creation
	Object Overhead
	Do Not Create Unnecessary Objects
	Use NaNs to Simulate Multiple Lines
	Modify Data Instead of Creating New Objects

	Avoid Repeated Searches for Objects
	Limit Scope of Search

	Screen Updates
	MATLAB Graphics System
	Managing Updates

	Optimize Code for Getting and Setting Graphics Properties
	Automatically Calculated Properties
	Inefficient Cycles of Sets and Gets
	Changing Text Extent to Rotate Labels

	Avoid Updating Static Data
	Segmenting Data to Reduce Update Times

	Transforming Objects Efficiently
	Use Low-Level Functions for Speed
	System Requirements for Graphics
	Minimum System Requirements
	Recommended System Requirements
	Upgrade Your Graphics Drivers
	Graphics Features That Have Specific Requirements

	Resolving Low-Level Graphics Issues
	Upgrade Your Graphics Hardware Drivers
	Choose a Renderer Implementation for Your System
	Fix Out-of-Memory Issues
	Contact Technical Support

